@article{AIHPA_1994__61_3_315_0, author = {Gr\`acia, Xavier and Pons, Josep M.}, title = {Noether transformations with vanishing conserved quantity}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {61}, year = {1994}, pages = {315-327}, mrnumber = {1311070}, zbl = {0811.70013}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1994__61_3_315_0} }
Gràcia, Xavier; Pons, Josep M. Noether transformations with vanishing conserved quantity. Annales de l'I.H.P. Physique théorique, Tome 61 (1994) pp. 315-327. http://gdmltest.u-ga.fr/item/AIHPA_1994__61_3_315_0/
[1] A Hamiltonian Approach to Lagrangian Noether Transformations, J. Phys. A: Math. Gen., Vol. 25, 1992, pp. 6357-6369. | MR 1196870 | Zbl 0771.58015
and ,[2] Equivalence between the Lagrangian and Hamiltonian Formalisms for Constrained Systems, J. Math. Phys., Vol. 27, 1986, pp. 2953-2962. | MR 866595 | Zbl 0613.70012
, , and ,[3] New Relations between Hamiltonian and Lagrangian Constraints, J. Phys. A: Math. Gen., Vol. 21, 1988, pp. 2705-2715. | MR 953447 | Zbl 0658.70016
,[4] On an Evolution Operator Connecting Lagrangian and Hamiltonian Formalisms, Lett. Math. Phys., Vol. 17, 1989, pp. 175-180. | MR 995795 | Zbl 0689.58016
and ,[5] Higher-Order Lagrangian Systems: Geometric Structures, Dynamics, and Constraints, J. Math. Phys., Vol. 32, 1991, pp. 2744-2763. | MR 1130547 | Zbl 0778.58025
, and ,[6] Gauge Transformations, Dirac's Conjecture and Degrees of Freedom for Constrained System, Ann. Phys., (N.Y.), Vol. 187, 1988, pp. 355-368. | MR 980754
and ,[7] Invariante Variationsprobleme, Nachr. König. Gesell. Wissen. Göttingen, Math.-Phys. Kl., 1918, pp. 235-257. | JFM 46.0770.01
,[8] Über die Erhaltungssätze der Elektrodynamik, Math. Ann., Vol. 84, 1921, pp. 258-276. | JFM 48.0877.02 | MR 1512036
,[9] Hamilton's Principle and the Conservation Theorems of Mathematical Physics, Rev. Mod. Phys., Vol. 23, 1951, pp. 253-260. | MR 44959 | Zbl 0044.38509
,[10] Generalized Noether's theorem. I. Theory, Ann. Phys. (N.Y.), Vol. 82, 1974, pp. 54-69. | MR 332060
,[11] Applications of Lie Groups to Differential Equations, GTM 107, Springer, New York, 1986. | MR 836734 | Zbl 0588.22001
,[12] A New Approach to the Converse of Noether's theorem, J. Phys. A: Math. Gen., Vol. 22, 1989, pp. 4777-4786. | MR 1023501 | Zbl 0739.58016
, and ,[13] Symmetries and Constants of Motion for Constrained Lagrangian Systems: a Presymplectic Version of the Noether Theorem, J. Phys. A: Math. Gen., Vol. 23, 1990, pp. 5061-5081. | MR 1083892 | Zbl 0708.70018
and ,[14] The second Noether Theorem as the Basis of the Theory of Singular Lagrangians and Hamiltonian Constraints, Riv. Nuovo Cim., Vol. 14 (3), 1991 | MR 1111890
,[15] Lectures on the antifield-BRST Formalism for Gauge Theories, Nucl. Phys. B (Proc. Suppl.), Vol. 18A, 1990, pp. 47-105. | MR 1128793 | Zbl 0957.81711
,[16] Closure of the Gauge Algebra, Generalized Lie Equations and Feynman Rules, Nucl. Phys. B, Vol. 234, 1984, pp. 106-124. | MR 736479
and ,[17] Constraints in Covariant Field Theory, Phys. Rev., Vol. 83, 1951, pp. 1018-1025. | MR 44382 | Zbl 0045.45505
and ,[18] Symmetries in Constrained Hamiltonian Dynamics, Ann. Phys. (N.Y.), Vol. 143, 1982, pp. 357-371. | MR 682973
,[19] To Construct Gauge Transformations from Singular Lagrangians, Europhys. Lett., Vol. 2, 1986, pp. 187-194.
, and ,[20] Existence Theorem for Gauge Symmetries in Hamiltonian Constrained Systems, Class. Quantum Grav., Vol. 7, 1990, pp. 1089-1096. | MR 1053325 | Zbl 0697.58022
, and ,[21] Noether's Theorem and Gauge Transformations: Application to the Bosonic String and CPn-12 Model, J. Math. Phys., Vol. 30, 1989, pp. 1345-1350. | MR 995780 | Zbl 0689.53051
, , and ,