Hamiltonians for systems of N particles interacting through point interactions
Dell'Antonio, G. F. ; Figari, R. ; Teta, A.
Annales de l'I.H.P. Physique théorique, Tome 61 (1994), p. 253-290 / Harvested from Numdam
Publié le : 1994-01-01
@article{AIHPA_1994__60_3_253_0,
     author = {Dell'Antonio, G. F. and Figari, R. and Teta, A.},
     title = {Hamiltonians for systems of N particles interacting through point interactions},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {61},
     year = {1994},
     pages = {253-290},
     mrnumber = {1281647},
     zbl = {0808.35113},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1994__60_3_253_0}
}
Dell'Antonio, G. F.; Figari, R.; Teta, A. Hamiltonians for systems of N particles interacting through point interactions. Annales de l'I.H.P. Physique théorique, Tome 61 (1994) pp. 253-290. http://gdmltest.u-ga.fr/item/AIHPA_1994__60_3_253_0/

[1] R.A. Minlos and L.D. Faddeev, On the Point Interaction for a Three-Particle System in Quantum Mechanics, Soviet Phys. Dokl., Vol. 6, 1962, pp. 1072-1074. | MR 147136

[2] R.A. Minlos and L.D. Faddeev, Comment on the Problem of Three Particles with Point Interactions, Soviet. Phys. Jept., Vol. 14, 1962, pp. 1315-1316. | MR 151141

[3] S. Albeverio, J.R. Fenstad, R. Hoegh-Krohn, W. Karwowski and T. Lindstrom, Schrödinger Operators with Potentials Supported by Null Sets, To appear in: Ideas and Methods in Quantum and Statistical Physics, S. ALBEVERIO, J. R. FENSTAD, H. HOLDEN, T. LINDSTROM, Eds., Cambridge University Press. | MR 1190521 | MR 1190519 | Zbl 0795.35088

[4] E.C. Svendsen, The Effect of Submanifold upon Essential Self-Adjointness and Deficiency Indices, J. Math. Anal. and Appl., Vol. 80, 1981, pp. 551-565. | MR 614850 | Zbl 0473.47039

[5] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, New-York, 1988. | MR 926273 | Zbl 0679.46057

[6] A. Teta, Quadratic Forms for Singular Perturbations of the Laplacian, Publ. R.I.M.S. Kyoto Univ., Vol. 26, 1990, pp. 803-817. | MR 1082317 | Zbl 0735.35048

[7] G. Dal Maso, An Introduction to Γ-Convergence, Preprint S.I.S.S.A., Trieste, 1992. | MR 1201152 | Zbl 0816.49001

[8] E. De Giorgi, G. Dal Maso, Γ-Convergence and Calculus of Variations. In: Mathematical Theories of Optimization, J. P. CECCONI, T. ZOLEZZI, Eds., Lect. N. in Math., Vol. 979, Springer Verlag, Berlin, 1983. | MR 713802 | MR 713808 | Zbl 0511.49007

[9] K.A. Ter Martirosyan and G.V. Skornyakov, The Three-Body Problem with Short-Range Forces. Scattering of Low-Energy Neutrons by Deuterons, Soviet. Phys. Jept., Vol. 4, 1957, pp. 648-661. | MR 88334 | Zbl 0077.43304

[10] L.H. Thomas, The Interaction Between a Neutron and a Proton and the Structure of H3, Phys. Rev., Vol. 47, 1935, pp. 903-909. | JFM 61.1582.02 | Zbl 0011.42701

[11] L.W. Bruch, J.A. Tjon, Binding of Three Identical Bosons in two Dimensions, Phys. Rev. A, Vol. 19, 1979, pp. 425-432.

[12] T.K. Lim, P.A. Maurone, Non Existence of the Efimov Effect in two Dimensions, Phys. Rev. B, Vol. 22, 1980, pp. 1467-1469. | MR 582759

[13] R.A. Minlos, M. Sh. SHERMATOV, On Pointlike Interaction of Three Quantum Particles, Vestnik Mosk, Univ. Ser. I Math. Mekh., Vol. 6, 1989, pp. 7-14. | MR 1065968 | Zbl 0707.70021

[14] R.A. Minlos, On the Point Interaction of Three Particles. In: Applications of Self-Adjoint Extensions in Quantum Physics, Exner, P., Seba, P. Eds., Lect. Notes in Phys., Vol. 324, Springer Verlag, Berlin, 1989. | MR 1009846 | Zbl 0738.47008

[15] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New-York, 1980.

[16] A. Erdelyi Et Al., Tables of Integral Transforms, Mc Graw-Hill, New-York, 1954.

[17] D.R. Jafaev, On the Theory of the Discrete Spectrum of the Three-Particle Schrôdinger Operator, Mat. Sb., Vol. 94, 1974, pp. 567-593. | MR 356752 | Zbl 0342.35041

[18] S.A. Vulgater, G.M. Zhislin, On the Finiteness of the Discrete Spectrum of Hamiltonians for Quantum Systems of Three One-or Two Dimensional Particles, Lett. Math. Phys., Vol. 25, 1992, pp. 299-306. | MR 1188809 | Zbl 0759.35033

[19] S. Albeverio, R. Høegh-Krohn, T.T. Wu, A Class of Exactly Solvable Three-Body Quantum Mechanical Problems and the Universal Low-Energy Behavior, Phys. Lett., Vol. 83 A, 1981, pp. 105-109. | MR 617170

[20] J. Dimock, The Non-Relativistic Limit of P(φ)2 Quantum Field Theories: Two-Particle Phenomena, Comm. Math. Phys., Vol. 57, 1977, pp. 51-66. | MR 475455