Hamiltonians with zero-range interactions supported by a brownian path
Cheremshantsev, S. E.
Annales de l'I.H.P. Physique théorique, Tome 56 (1992), p. 1-25 / Harvested from Numdam
Publié le : 1992-01-01
@article{AIHPA_1992__56_1_1_0,
     author = {Cheremshantsev, S. E.},
     title = {Hamiltonians with zero-range interactions supported by a brownian path},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {56},
     year = {1992},
     pages = {1-25},
     mrnumber = {1149866},
     zbl = {0755.47050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1992__56_1_1_0}
}
Cheremshantsev, S. E. Hamiltonians with zero-range interactions supported by a brownian path. Annales de l'I.H.P. Physique théorique, Tome 56 (1992) pp. 1-25. http://gdmltest.u-ga.fr/item/AIHPA_1992__56_1_1_0/

[1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics. Springer-Verlag, New York, 1988. | MR 926273 | Zbl 0679.46057

[2] B.S. Pavlov, Boundary Conditions on Thin Manifolds and the Boundedness from Below of Three-Body Schroedinger Operator Wirh Pointwise Potential, Mat. Sbornik (in russian), Vol. 136 (178), No. 2 (6), 1988, pp. 163-177. | MR 954922 | Zbl 0687.35064

[3] A.S. Blagovestchenski and K.K. Lavrentiev, The Three-Dimensional Laplace Operator with the Boundary Condition on a line, Vestnik L.G.U. (in russian), No. 1, 1977, pp. 9-15. | Zbl 0346.35033

[4] V.I. Slobodin, Boundary Problems for Elliptic Operators with Boundary Conditions on Smooth Manifolds of Arbitrary Dimension, Vestnik L.G. U. (in russian), No. 4, 1988, pp. 100-102. | MR 987183 | Zbl 0696.35202

[5] J.-P. Antoine, F. Gesztesy and J. Shabani, Exactly Solvable Models of Sphere Interactions in Quantum Mechanics, J. Phys., Vol. A 20, 1987, pp. 3687-3712. | MR 913638

[6] A.N. Kochubei, Elliptic Operators with Boundary Conditions on a Subset of Measure Zero, Funct. Anal. Appl., Vol. 16, 1982, pp. 137-139. | MR 659171 | Zbl 0506.35029

[7] A. Grossmann, R. Hoegh-Krohn and M. Mebkhout, A Class of Explicitly Soluble, Many-Center Hamiltonians for One-Particle Quantum Mechanics in Two and Three Dimensions I., J. Math. Phys., Vol. 21, 1980, pp. 2376-2385. | MR 585589

[8] S. Albeverio, S. Fenstad, R. Hoegh-Krohn and T. Lindstrom, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York-San Francisco-London, 1986. | MR 859372 | Zbl 0605.60005

[9] F.A. Berezin and L.D. Faddeev, A Remark on Schroedinger's Equation with a Singular Potential, Soviet. Math. Dokl., Vol. 2, 1961, pp. 372-375. | Zbl 0117.06601

[10] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. 2. Pitman, Boston-London-Melbourne, 1981. | Zbl 0467.47001

[11] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Academic Press, New York-London, 1972. | MR 493419 | Zbl 0242.46001