Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials
Jensen, Arne ; Ozawa, Tohru
Annales de l'I.H.P. Physique théorique, Tome 54 (1991), p. 229-243 / Harvested from Numdam
Publié le : 1991-01-01
@article{AIHPA_1991__54_3_229_0,
     author = {Jensen, Arne and Ozawa, Tohru},
     title = {Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {54},
     year = {1991},
     pages = {229-243},
     mrnumber = {1122654},
     zbl = {0768.47002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1991__54_3_229_0}
}
Jensen, Arne; Ozawa, Tohru. Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials. Annales de l'I.H.P. Physique théorique, Tome 54 (1991) pp. 229-243. http://gdmltest.u-ga.fr/item/AIHPA_1991__54_3_229_0/

[1] J.E. Avron and I.W. Herbst, Spectral and Scattering Theory for the Schrôdinger Operators Related to the Stark Effect, Commun. Math. Phys., Vol. 52, 1977, pp. 239-254. | MR 468862 | Zbl 0351.47007

[2] I.W. Herbst, Unitary Equivalence of Stark Effect Hamiltonians, Math. Z., Vol. 155, 1977, pp. 55-70. | MR 449318 | Zbl 0338.47009

[3] A. Jensen, Asymptotic Completeness for a New Class of Stark Effect Hamiltonians, Commun. Math. Phys., Vol. 107, 1986, pp. 21-28. | MR 861882 | Zbl 0606.34020

[4] A. Jensen, Commutator Methods and Asymptotic Completeness for One-Dimensional Stark Effect Hamiltonians, pp. 151-166 in Schrödinger Operators, Aarhus, 1985, E. BALSLEV Ed., Springer Lect. Notes Math., No. 1218, 1986. | MR 869600 | Zbl 0608.35013

[5] A. Jensen, Scattering Theory for Hamiltonians with Stark Effect, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 46, 1987, pp. 383-395. | Numdam | MR 912156 | Zbl 0677.34026

[6] A. Jensen and K. Yajima, preprint, 1990.

[7] T. Kato, Perturbation Theory for Linear Operators, second edition, Springer-Verlag, Heidelberg, 1976. | MR 407617 | Zbl 0342.47009

[8] H. Kitada and K. Yajima, A Scattering Theory for Time-Dependent Long-Range Potentials, Duke Math. J., Vol. 42, 1982, pp. 341-376. | MR 659945 | Zbl 0499.35087

[9] M. Loss and B. Thaller, Scattering of Particles by Long-Range Magnetic Fields, Ann. Phys. (N. Y.), Vol. 176, 1987, pp. 159-180. | MR 893482 | Zbl 0646.35074

[10] T. Ozawa, Non-Existence of Wave Operators for Stark Effect Hamiltonians, preprint, 1989, Math. Z. (to appear).

[11] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. 3, Scattering Theory, Academic Press, New York, 1979. | MR 529429 | Zbl 0405.47007

[12] B. Simon, Phase Space Analysis of Simple Scattering Systems. Extensions of Some Work of Enss, Duke Math. J., Vol. 46, 1979, pp. 119-168. | MR 523604 | Zbl 0402.35076

[13] K Veselić and J. Weidmann, Potential Scattering in a Homogeneous Electrostatic Field, Math. Z., Vol. 156, 1977, pp. 93-104. | MR 510118 | Zbl 0364.35042

[14] D. White, The Stark effect and long range scattering in two Hilbert spaces, preprint, 1990. | MR 1089052 | Zbl 0695.35144

[15] K. Yajima, Spectral and Scattering Theory for Schrôdinger Operators with Stark Effect, J. Fac. Sci. Univ. Tokyo, Sect IA, Vol. 26, 1979, pp. 377-390. | MR 560003 | Zbl 0429.35027