Invariant subspaces for the Schrödinger evolution group
Ozawa, Tohru
Annales de l'I.H.P. Physique théorique, Tome 54 (1991), p. 43-57 / Harvested from Numdam
Publié le : 1991-01-01
@article{AIHPA_1991__54_1_43_0,
     author = {Ozawa, Tohru},
     title = {Invariant subspaces for the Schr\"odinger evolution group},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {54},
     year = {1991},
     pages = {43-57},
     mrnumber = {1102971},
     zbl = {0734.35090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1991__54_1_43_0}
}
Ozawa, Tohru. Invariant subspaces for the Schrödinger evolution group. Annales de l'I.H.P. Physique théorique, Tome 54 (1991) pp. 43-57. http://gdmltest.u-ga.fr/item/AIHPA_1991__54_1_43_0/

[1] W.O. Amrein, M.B. Cibils and K.B. Sinha, Configuration Space Properties of S-Matrix and Time Delay in Potential Scattering, Ann. Inst. Henri Poincare, Physique Theorique, Vol. 47, 1987, pp. 367-382. | Numdam | MR 933683 | Zbl 0657.35101

[2] M. Arai, Absolute Continuity of Hamilton Operatorswith Repulsive Potentials, Publ. RIMS, Kyoto Univ., Vol. 7, 1971, pp. 621-635. | MR 318975 | Zbl 0249.47005

[3] W.G. Faris and R.B. Lavine, Commutators and Self-Adjointness of Hamilton Operators, Commun. Math. Phys., Vol. 35, 1974, pp. 39-48. | MR 391794 | Zbl 0287.47004

[4] J. Fröhlich, Application of Commutator Theorems to the Integration Representations of Lie Algebras and Commutation Relations, Commun. Math. Phys., Vol. 54, 1977, pp. 135-150. | MR 473909 | Zbl 0374.46065

[5] J. Ginibre and G. Velo, On a Class of Nonlinear Schrödinger Equations I. The Cauchy Problem, General Case, J. Funct. Anal., Vol. 32, 1979, pp. 1-32. | MR 533218 | Zbl 0396.35028

[6] N. Hayashi and T. Ozawa, Smoothing Effect for Some Schrödinger Equations, J. Funct. Anal., Vol. 85, 1989, pp. 307-348. | MR 1012208 | Zbl 0681.35079

[7] N. Hayashi and T. Ozawa, Time Decay for Some Schrödinger Equations, Math. Z., Vol. 200, 1989, pp. 467-483. | MR 987581 | Zbl 0646.35020

[8] I. Herbst, Spectral Theory of the Operator (p2 + m2)1/2 - Ze2/r, Commun. Math. Phys. Vol. 53, 1977, pp. 285-294. | MR 436854 | Zbl 0375.35047

[9] W. Hunziker, On the Space-Time Behavior of Schrödinger Wavefunctions, J. Math. Phys., Vol. 7, 1966, pp. 300-304. | MR 193939 | Zbl 0151.43801

[10] C.S. Lin, Interpolation Inequalities with Weights, Comm. PDE. Vol. 11, 1986, pp. 1515- 1538. | MR 864416 | Zbl 0635.46032

[11] K. Masuda, A Unique Continuation Theorem for Solutions of the Schrödinger Equations, Proc. Japan Acad., Vol. 43, 1967, pp. 361-364. | MR 222449 | Zbl 0153.42601

[12] T. Ozawa, Remarks on the Space-Time Behavior of Scattering Solutions to the Schrödinger Equations, Publ. RIMS, Kyoto Univ., Vol. 23, 1987, pp. 479-486. | MR 905022 | Zbl 0644.35078

[13] T. Ozawa, New LP-Estimates for Solutions to the Schrödinger Equations and Time Asymptotic Behavior of Observables, Publ. RIMS, Kyoto Univ., Vol. 25, 1989, pp. 521- 577. | MR 1025065 | Zbl 0702.35020

[14] C. Radin and B. Simon, Invariant Domains for the Time-Dependent Schrödinger Equation, J. Differ. Equations, Vol. 29, 1978, pp. 289-296. | MR 502354 | Zbl 0351.34004

[15] T. Schonbek, Decay of Solutions of Schrödinger Equations, Duke Math. J., Vol. 46, 1979, pp. 203-213. | MR 523607 | Zbl 0413.35026

[16] H. Tanabe, Equations of Evolution, Pitman, London, 1979. | MR 533824

[17] T. Triebel, Spaces of Distributions with Weights. Multipliers in Lp-Spaces with Weights, Math. Nachr., Vol. 78, 1977, pp. 339-355. | MR 472863 | Zbl 0376.46020

[18] C.H. Wilcox, Uniform Asymptotic Wave Packets in the Quantum Theory of Scattering, J. Math. Phys., Vol. 6, 1965, pp. 611-620. | MR 182798 | Zbl 0125.46005