@article{AIHPA_1990__53_4_467_0, author = {Aurell, Erik}, title = {Finding eigenvalues of the period-doubling operator from the characteristic equation}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {52}, year = {1990}, pages = {467-477}, mrnumber = {1096104}, zbl = {0727.58036}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1990__53_4_467_0} }
Aurell, Erik. Finding eigenvalues of the period-doubling operator from the characteristic equation. Annales de l'I.H.P. Physique théorique, Tome 52 (1990) pp. 467-477. http://gdmltest.u-ga.fr/item/AIHPA_1990__53_4_467_0/
[1] 21, 1979, p. 669. | MR 555919 | Zbl 0515.58028
, J. Stat. Phys., Vol.[2] 52, 1988, p. 527. | MR 968946 | Zbl 01397585
, J. Stat. Phys., Vol.[3] 39, 1989, p. 5359. | MR 998529
, and , Phys. Rev. A, Vol.[4] 61, 1988, p.2729. | MR 969993
, Phys. Rev. Lett., Vol.[5] 31, 1985, p. 1872.
and , Phys. Rev. A, Vol.[6] Non-linear Evolution and Chaotic Phenomena, Plenum, New York 1987.
, in P. ZWEIFEL, G. GALLAVOTTI and M. ANILE Eds.,[7] 20, 1956, p. 47. | MR 88511 | Zbl 0072.08201
, J. Ind. Math. Soc., Vol.[8] 34, 1976, p. 231, and , The Thermodynamic Formalism for Expanding Maps, I.H.E.S. P/89/08, An Extension of the Theory of Fredholm Determinants, I.H.E.S. P/89/38. | MR 420720 | Zbl 0329.58014
, Inventiones math., Vol.[9] Convergence of Dynamical Zeta Functions, J. Stat. Phys., Vol. 58, 1990, pp. 967-995. | MR 1049054 | Zbl 0713.58045
,[10] Numerical Recipies, Cambridge University Press, 1988.
, , and ,[11] Recycling Strange Sets I, II, Non-linearity (in press). | Zbl 0702.58064
, and ,[12] Methods of Mathematical Physics.
and ,[13] Universality in Chaos, P. CVITANOVIĆ Ed., Adam Hilger, Bristol (private communication). | MR 766402
, in[14]
and (private communication).[15] Essentials of Padé Approximants, Academic Press, 1975. | Zbl 0315.41014
,[16] 5, 1954, p. 233. | MR 63763 | Zbl 0055.34702
, Z. Angew. Math. Phys., Vol.