Finding eigenvalues of the period-doubling operator from the characteristic equation
Aurell, Erik
Annales de l'I.H.P. Physique théorique, Tome 52 (1990), p. 467-477 / Harvested from Numdam
Publié le : 1990-01-01
@article{AIHPA_1990__53_4_467_0,
     author = {Aurell, Erik},
     title = {Finding eigenvalues of the period-doubling operator from the characteristic equation},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {52},
     year = {1990},
     pages = {467-477},
     mrnumber = {1096104},
     zbl = {0727.58036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1990__53_4_467_0}
}
Aurell, Erik. Finding eigenvalues of the period-doubling operator from the characteristic equation. Annales de l'I.H.P. Physique théorique, Tome 52 (1990) pp. 467-477. http://gdmltest.u-ga.fr/item/AIHPA_1990__53_4_467_0/

[1] M.J. Feigenbaum, J. Stat. Phys., Vol. 21, 1979, p. 669. | MR 555919 | Zbl 0515.58028

[2] M.J. Feigenbaum, J. Stat. Phys., Vol. 52, 1988, p. 527. | MR 968946 | Zbl 01397585

[3] M.J. Feigenbaum, I. Procaccia and T. Tél, Phys. Rev. A, Vol. 39, 1989, p. 5359. | MR 998529

[4] P. Cvitanović, Phys. Rev. Lett., Vol. 61, 1988, p.2729. | MR 969993

[5] P. Grassberger and I. Procaccia, Phys. Rev. A, Vol. 31, 1985, p. 1872.

[6] D. Sullivan, in P. ZWEIFEL, G. GALLAVOTTI and M. ANILE Eds., Non-linear Evolution and Chaotic Phenomena, Plenum, New York 1987.

[7] A. Selberg, J. Ind. Math. Soc., Vol. 20, 1956, p. 47. | MR 88511 | Zbl 0072.08201

[8] D. Ruelle, Inventiones math., Vol. 34, 1976, p. 231, and D. Ruelle, The Thermodynamic Formalism for Expanding Maps, I.H.E.S. P/89/08, An Extension of the Theory of Fredholm Determinants, I.H.E.S. P/89/38. | MR 420720 | Zbl 0329.58014

[9] E. Aurell, Convergence of Dynamical Zeta Functions, J. Stat. Phys., Vol. 58, 1990, pp. 967-995. | MR 1049054 | Zbl 0713.58045

[10] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipies, Cambridge University Press, 1988.

[11] R. Artuso, E. Aurell and P. Cvitanović, Recycling Strange Sets I, II, Non-linearity (in press). | Zbl 0702.58064

[12] D. Hilbert and R. Courant, Methods of Mathematical Physics.

[13] O. Lanford, in Universality in Chaos, P. CVITANOVIĆ Ed., Adam Hilger, Bristol (private communication). | MR 766402

[14] J.-P. Eckmann and H. Epstein (private communication).

[15] Baker, Essentials of Padé Approximants, Academic Press, 1975. | Zbl 0315.41014

[16] H. Rutishauser, Z. Angew. Math. Phys., Vol. 5, 1954, p. 233. | MR 63763 | Zbl 0055.34702