The Tomita operator for the free scalar field
Figliolini, Franca ; Guido, Daniele
Annales de l'I.H.P. Physique théorique, Tome 51 (1989), p. 419-435 / Harvested from Numdam
Publié le : 1989-01-01
@article{AIHPA_1989__51_4_419_0,
     author = {Figliolini, Franca and Guido, Daniele},
     title = {The Tomita operator for the free scalar field},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {51},
     year = {1989},
     pages = {419-435},
     mrnumber = {1034596},
     zbl = {0715.46049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1989__51_4_419_0}
}
Figliolini, Franca; Guido, Daniele. The Tomita operator for the free scalar field. Annales de l'I.H.P. Physique théorique, Tome 51 (1989) pp. 419-435. http://gdmltest.u-ga.fr/item/AIHPA_1989__51_4_419_0/

[1] H. Araki, A Lattice of von Neumann Algebras Associated with the Quantum Field Theory of a Free Bose Field, J. Math. Phys., Vol. 4, 1963, pp. 1343-1362. | MR 158666 | Zbl 0132.43805

[2] G. Benfatto and F. Nicolo, The Local von Neumann Algebras for the Massless Scalar Free Field and the Free Electromagnetic Field, J. Math. Phys., Vol. 19, 1978. | MR 468828

[3] J.J. Bisognano and E.H. Wichmann, On the Duality Condition for an Hermitian Scalar Field, J. Math. Phys., Vol. 16, 1975, p. 985. | MR 438943 | Zbl 0316.46062

[4] G.F. Dell'Antonio, Structure of the Algebras of Some Free Systems, Comm. Math. Phys., Vol. 9, 1968, pp.81-117. | MR 231598 | Zbl 0159.29002

[5] J.P. Eckmann and K. Osterwalder, An Application of Tomita's Theory of Modular Hilbert Algebras: Duality for Free Bose Field, J. Funct. Analysis, Vol. 13, 1973, pp. 1- 22. | MR 345548 | Zbl 0262.46068

[6] F. Figliolini and D. Guido, The type of Second Quantization Factors, Preprint. | MR 1331775

[7] R. Haag, N.M. Hugenoltz and M. Winnik, On the Equilibrium States in Quantum Statistical Mechanics, Comm. Math. Phys., Vol. 5, 1967, pp. 215-236. | MR 219283 | Zbl 0171.47102

[8] P. Hislop and R. Longo, Modular Structure of the Local Observables Associated with the Free Massless Scalar Field Theory, Comm. Math. Phys., Vol. 84, 1982. | MR 660540 | Zbl 0491.46060

[9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1984.

[10] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary value problems and applications I, Springer-Verlag, Berlin, 1972. | Zbl 0223.35039

[11] G.V. Maz'Ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985. | MR 817985

[12] J.E. Roberts, P. Leyland and D. Testard, Duality for Quantum Free Fields, unpublished paper.

[13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I and II, Academic Press, 1975.

[14] Segal and Goodman, Anti-Locality of Certain Invariant Operators, J. Math. Mech., Vol. 14, 1965. | Zbl 0151.44201

[15] G.L. Sewell, Relativity of Temperature and Hawking Effect, Phys. Lett., Vol. 79A, 1980, p. 23. | MR 597629

[16] E.C. Zeeman, Causality Implies the Lorentz Group, J. Math. Phys., Vol. 5, 1964. | MR 162587 | Zbl 0133.23205