@article{AIHPA_1989__51_2_155_0, author = {Petkov, Vesselin and Georgiev, Vladimir}, title = {RAGE theorem for power bounded operators and decay of local energy for moving obstacles}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {51}, year = {1989}, pages = {155-185}, mrnumber = {1033615}, zbl = {0705.35094}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1989__51_2_155_0} }
Petkov, Vesselin M.; Georgiev, Vladimir S. RAGE theorem for power bounded operators and decay of local energy for moving obstacles. Annales de l'I.H.P. Physique théorique, Tome 51 (1989) pp. 155-185. http://gdmltest.u-ga.fr/item/AIHPA_1989__51_2_155_0/
[1] Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps, Ann. Inst. Henri Poincaré (Physique théorique) t. 47, n° 4, 1987, pp. 383-428. | Numdam | MR 933684 | Zbl 0657.35102
and ,[2] Energy Boundness and Local Energy Decay of Waves Reflecting off a Moving Obstacle, Indiana Univ. Math. J., t. 25, 1976, pp. 671-690. | MR 415093 | Zbl 0348.35059
and ,[3] Representation of the Scattering Operator for Moving Obstacles, Indiana Univ. Math. J., t. 28, 1979, pp. 643-671. | MR 542950 | Zbl 0427.35056
and ,[4] Scattering of Waves by Periodically Moving Bodies, J. Funct. Anal., t, 47, 1982, pp. 180-229. | MR 664336 | Zbl 0494.35073
and ,[5] Abstract Scattering Theory for Time Periodic Systems with Applications to Electromagnetism, Indiana Univ. Math. J., t. 34, 1985, pp. 33-83. | MR 773393 | Zbl 0582.47011
and ,[6] The Initial Boundary Problem for the Maxwell Equations in the Presence of a Moving Body, S.I.A.M. J. Math. Anal., t. 16, No. 6, 1985, pp. 1165-1179. | MR 807903 | Zbl 0593.35069
and ,[7] Linear Operators, Part III, Spectral Operators, Wiley Interseciences, New York, 1971. | MR 412888 | Zbl 0243.47001
and ,[8] Théorème de type RAGE pour des opérateurs à puissances bornées, C.R. Acad. Sci. Paris, T. 303, série I, 1986, pp. 605-608. | MR 867547 | Zbl 0603.47001
and ,[9] Uniform Boundness of the Energy for Time Periodic Potentials, Conference on Operator Theory, Timichoara, 1988, (to appear). | MR 1090126 | Zbl 0704.35112
,[10] The Analysis of Linear Partial Differential Operators III, Springer-Verlag, Berlin, Heidelberg, 1985. | MR 781536 | Zbl 0601.35001
,[11] Scattering Theory, Academic Press, 1967. | Zbl 0186.16301
and ,[12] Scattering Theory for the Acoustical Equation in an Even Number of Space Dimensions, Indiana Univ, Math. J., t. 22, 1972, pp. 101-134. | MR 304882 | Zbl 0236.35036
and ,[13] Scattering Theory for Dissipative Systems, J. Funct. Anal., t. 14, 1973, pp. 172-233. | Zbl 0295.35069
and ,[14] Singularities and Energy Decay in Acoustical Scattering, Duke Math. J., T. 46, 1979, pp. 43-59. | MR 523601 | Zbl 0415.35050
,[15] Singularities of Boundary Value Problems I, II, Comm. Pure Appl. Math., t. 31, 1978, pp. 593-617; t. 35, 1982, pp. 129-168. | MR 492794 | Zbl 0546.35083 | Zbl 0368.35020
and ,[16] Decay of Solutions of the Wave Equation Outside Non-Tapping Obstacles, Comm. Pure Appl. Math., t. 30, 1977, pp. 447-508. | MR 509770 | Zbl 0372.35008
, and ,[17] Scattering Theory for Mixed Problems in the Exteriour of Moving Obstacles, pp. 141-155 in Hyperbolic Equations, F. COLOMBINI and M. K. V. MURTHY Ed., Pitman Research Notes in Mathematics Series, 158, Longman Scientific & Technical, 1987. | Zbl 0732.35065
,[18] Les problèmes inverses de diffusion pour les perturbations dépendant du temps, Séminaire Équations aux Dérivées Partielles, Exposé n° XX, École Polytechnique, 1987-1988. | Numdam | MR 1018192 | Zbl 0682.35103
,[19] Scattering Theory for Hyperbolic Operators, North-Holland, Amsterdam, 1989. | Zbl 0687.35067
,[20] On the Exponential Growth of the Local Energy for Periodically Moving Obstacles, Osana J. Math. (to appear). | Zbl 0707.35084
and ,[21] Methods of Modern Mathematical Physics, Vol. III, Scattering Theory, Academic Press, New York, 1979. | MR 529429 | Zbl 0405.47007
and ,[22] Phase Space Analysis of Simple Scattering Systems: Extension of Some Work of Enss, Duke Math. J., t. 46, 1979, pp. 119-168. | MR 523604 | Zbl 0402.35076
,[23] The Existence of the Scattering Operator for Moving Obstacles, J. Funct. Anal., t. 31, 1979, pp. 255-262. | MR 525956 | Zbl 0457.35049
,[24] Asymptotic Methods for the Equations of the Mathematical Physics, Moscow University, 1982 (in Russian). | MR 700559 | Zbl 0518.35002
,