@article{AIHPA_1989__50_2_161_0, author = {Antoine, J.-P. and Karwowski, W.}, title = {Commuting normal operators in partial $L^2 (\mathbb {R}^2)$-algebras}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {51}, year = {1989}, pages = {161-185}, mrnumber = {1002818}, zbl = {0678.47041}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1989__50_2_161_0} }
Antoine, J.-P.; Karwowski, W. Commuting normal operators in partial $L^2 (\mathbb {R}^2)$-algebras. Annales de l'I.H.P. Physique théorique, Tome 51 (1989) pp. 161-185. http://gdmltest.u-ga.fr/item/AIHPA_1989__50_2_161_0/
[1] 21, 1971, p. 85 ; Trans. Amer. Math. Soc., t. 187, 1974, p. 261. | MR 283580 | Zbl 0214.14102
, Commun. Math. Phys., t.[2] 3, 1972, p. 279 ; Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., t. 24, 1975, p. 465 ; t. 30, 1981, p. 572. | MR 322527 | Zbl 0252.46087
, Reports Math. Phys., t.[3] 21, 1985, p. 205; Add. ibid., t. 22, 1986, p. 507. | MR 861779 | Zbl 0609.47058
and , Publ. RIMS, Kyoto Univ., t.[4] 46, 1987, p. 299. | Numdam | MR 892367 | Zbl 0629.46048
and , Ann. Inst. H. Poincaré, t.[5] Representations of partial *-algebras and sesquilinear forms (unpublished).
and ,[6] Spontaneous Symmetry Breakdown and Related Topics (Karpacz, 1985), p. 247-267 ; L. Michel, J. Mozrzymas and A. Pekalski (eds.) ; World Scientific, Singapore, 1985. | MR 835511
, In:[7] 46, 1987, p. 325. | Numdam | MR 892368 | Zbl 0629.46049
, and , Ann. Inst. H. Poincaré, t.[8] 25, 1984, p. 2633. | MR 756559 | Zbl 0556.47026
and , J. Math. Phys., t.[9] 70, 1959, p. 572. | MR 107176 | Zbl 0091.10704
, Ann. Math., t.[10] Methods of Modern Mathematical Physics. I. Functional Analysis. II. Fourier Analysis, Self-adjointness, Academic, New York, 1972, 1975 . | MR 493419 | Zbl 0242.46001
and ,[11] 47, 1984, p. 131 ; Manuscr. Math., t. 57, 1985, p. 221 ; Math. Nachr., t. 125, 1986, p. 83. and , J. Int. Eq. and Oper. Th., t. 7, 1984, p. 815. | Zbl 0576.47014
, Acta Sci. Math. (Szeged), t.[12] Operator Commutation Relations, Reidel, Dordrecht and Boston, 1984. , J. Math. Anal. Appl., t. 123, 1987, p. 508. | MR 746138 | Zbl 0626.47042
and ,[13] 56, 1983, p. 1175. | MR 734580
, and , Helv. Phys. Acta, t.[14] Partial *-algebras of closable operators. I. The general theory and the abelian case, preprint UCL-IPT-88-25 (to be published).
, and ,[15] 7, 1966, p. 1097 ; Commun. Math. Phys., t. 3, 1966, p. 98. | MR 216836 | Zbl 0144.23404
, J. Math. Phys., t.[16] 9A, 1966, p. 255 ; The Rigged Hilbert Space and Quantum Mechanics, Lecture Notes in Physics, t. 78, Springer, Berlin, 1978. | Zbl 0388.46045
. Boulder Lectures in Theoretical Physics, t.[17] 10, 1969, p. 53 et 2276. | Zbl 0172.56602
, J. Math. Phys., t.[18] Leçons d'Analyse Fonctionnelle, Gauthier-Villars, Paris and Akadémiai Kiado, Budapest, 1968.
and ,[19] Theory of Linear Operators in Hilbert Spaces, I, II. F. Ungar, New York, 1966. | Zbl 0098.30702
and ,[20] Linear Operators in Hilbert Spaces, Springer, Berlin, 1980. | MR 566954 | Zbl 0434.47001
,[21] Les Distributions, t. 4, Dunod, Paris, 1967. | Zbl 0179.18502
and ,[22] 38, 1965, p. 30. | MR 209878 | Zbl 0138.43703
and , Helv. Phys. Acta, t.[23] Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1957. | MR 94722 | Zbl 0088.32304
,[24] Direct Integral Theory, Marcel Dekker, New York, 1980. | MR 591683 | Zbl 0482.46037
,[25] Partial *-algebras of closable operators. II-IV (in preparation).
, and ,[26] Commutation Properties of Hilbert Space Operators and Related Topics, Springer, Berlin, 1967. | Zbl 0149.35104
,[27] 26, 1985, p. 1118. | MR 790044 | Zbl 0614.47034
, J. Math. Phys., t.[28] Self-Adjoint Operators, Lect. Notes Math., t. 433, Springer, Berlin, 1975. | MR 467348 | Zbl 0317.47016
,[29] Measure Theory, Van Nostrand, Princeton, 1950. | MR 33869 | Zbl 0040.16802
,[30] Naive Set Theory, Van Nostrand, Princeton, 1961. | MR 114756 | Zbl 0087.04403
,