@article{AIHPA_1989__50_1_37_0, author = {Georgiev, Vladimir}, title = {Inverse scattering problem for the Maxwell equations outside moving body}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {51}, year = {1989}, pages = {37-70}, mrnumber = {994042}, zbl = {0675.35066}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1989__50_1_37_0} }
Georgiev, Vladimir. Inverse scattering problem for the Maxwell equations outside moving body. Annales de l'I.H.P. Physique théorique, Tome 51 (1989) pp. 37-70. http://gdmltest.u-ga.fr/item/AIHPA_1989__50_1_37_0/
[1] Existence de l'opérateur de diffusion pour l'equation des ondes avec un potentiel périodique en temps, C. R. Acad. Sci. Paris, Série I, t. 303, 1986, p. 671-673. | MR 870693 | Zbl 0611.35067
et ,[2] Opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps, Ann. Inst. Henri Poincare, Physique Théorique, t. 47, 1987, p. 383-428. | Numdam | MR 933684 | Zbl 0657.35102
et ,[3] Energy boundness and local energy decay of waves reflecting of a moving obstacle, Indiana Univ. Math. J., t. 25, 1976, p. 671-690. | MR 415093 | Zbl 0348.35059
and ,[4] Representation of the scattering operator for moving obstacles, Indiana Univ. Math. J., t. 28, 1979, p. 643-671. | MR 542950 | Zbl 0427.35056
and ,[5] Scattering of waves by periodically moving bodies, J. Funct. Anal., t. 47, 1982, p. 180-229. | MR 664336 | Zbl 0494.35073
and ,[6] Abstract scattering theory for time periodic systems with applications to electromagnetism, Indiana Univ. Math. J., t. 34, 1985, p. 33-83. | MR 773393 | Zbl 0582.47011
and ,[7] The leading singularity of a wave reflected by a moving boundary, J. Diff. Eq., t. 52, 1984, p. 175-203. | MR 741267 | Zbl 0547.35075
and ,[8] The initial-boundary problem for the Maxwell equations in the presence of a moving body, SIAM, Journal Math. Anal., t. 16, 1985, p. 1165- 1179. | MR 807903 | Zbl 0593.35069
and ,[9]
and , Unpiblished manuscript, 1985.[10] Integral geometry and associated questions of representation theory, Moscow, 1962 (in Russian).
, , ,[11] The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math., t. 113, 1965, p. 153-180. | MR 172311 | Zbl 0163.16602
,[12] The analysis of linear partial differential operators I, Distribution theory and Fourier Analysis, Springer Verlag, Berlin-Heidelberg-New York-Toronto, 1983. | MR 717035 | Zbl 0521.35001
,[13] Spectral theory for symmetric systems in an exterior domain, preprint, to appear in Tsukuba, J. Math. | MR 926454 | Zbl 0655.35059
,[14] Spectral theory for symmetric systems in an exterior domain. II. Part, preprint. | MR 976314 | Zbl 0669.47003
,[15] Linear evolution equations of « hyperbolic » type, J. Fac. Sci. Univ. Tokyo, t. 17, 1970, p. 241-258. | MR 279626 | Zbl 0222.47011
,[16] Scattering Theory, Academic Press, New York, 1967. | MR 217440 | Zbl 0186.16301
and ,[17] Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., t. 13, 1960, p. 427-455. | MR 118949 | Zbl 0094.07502
and ,[18] Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., t. 28, 1975, p. 607-675. | MR 410107 | Zbl 0314.35061
and ,[19] A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., t. 30, 1977, p. 165-194. | MR 435625 | Zbl 0335.35076
,[20] Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Comm. Part. Diff. Eq., t. 2, 1977, p. 395-438. | MR 437946 | Zbl 0373.35055
and ,[21] Forward scattering by a convex obstacle, Comm. Pure Appl. Math., t. 33,1980, p. 461-499. | MR 575734 | Zbl 0435.35066
,[22] Singularities and energy decay in acoustical scattering, Duke Math. J., t. 46, 1979, p. 43-59. | MR 523601 | Zbl 0415.35050
,[23[ Representation of the scattering operator for dissipative hyperbolic systems, Comm. PDE, t. 6, 1981, p. 993-1022. | MR 627656 | Zbl 0464.35070
,[24] Scattering theory for hyperbolic operators, Notas de Curso, n° 24, Departemento de Matematica, Universidade Federal de Pernambuco, Recife, 1987. | MR 912265
,[25] Leading singularity of the scattering kernel, Comp. Rend. Acad. Sci. bulg., t. 40, n° 12, 1987, p. 5-8. | MR 937109 | Zbl 0657.35106
and ,[26] Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., t. 189, 1974, p. 303-318. | MR 340832 | Zbl 0282.35014
and ,[27] Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., t. 291, 1985, p. 167-187. | MR 797053 | Zbl 0549.35099
,[28] Spectral and scattering theory for Maxwell's equations in an exterior domain, Arch. Rat. Mech. Anal., t. 28, 1975, p. 284-322. | Zbl 0155.43502
,[29] Singularities of the scattering kernel for convex obstacles, J. Math. Kyoto Univ., t. 22, 1983, p. 729-765. | MR 685528 | Zbl 0511.35070
,[30] Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981. | MR 618463 | Zbl 0453.47026
,[31] Reflection of singularities of solutions to systems of differential equations, CPAM, t. 27, 1975, p. 457-478. | MR 509098 | Zbl 0332.35058
,[32] Theory of Relativity, Iwanami, 1977 (in Japan).
,[33] Electromagnetic fields in the presence of rotation bodies, Proc. IEEE, t. 64, 1976, p. 301-318.
,