Algebraic quantum field theory and noncommutative moment problems. I
Alcantara-Bode, J. ; Yngvason, J.
Annales de l'I.H.P. Physique théorique, Tome 49 (1988), p. 147-159 / Harvested from Numdam
@article{AIHPA_1988__48_2_147_0,
     author = {Alcantara-Bode, J. and Yngvason, Jakob},
     title = {Algebraic quantum field theory and noncommutative moment problems. I},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {49},
     year = {1988},
     pages = {147-159},
     mrnumber = {952659},
     zbl = {0653.46071},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1988__48_2_147_0}
}
Alcantara-Bode, J.; Yngvason, J. Algebraic quantum field theory and noncommutative moment problems. I. Annales de l'I.H.P. Physique théorique, Tome 49 (1988) pp. 147-159. http://gdmltest.u-ga.fr/item/AIHPA_1988__48_2_147_0/

[1] A.S. Wightman and L. Gårding, Fields as operator valued distributions in relativistic quantum field theory. Ark. f Fys., t. 28, 1965, p. 129. | Zbl 0138.45401

[2] R. Haag and D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys., t. 5, 1964, p. 848. | MR 165864 | Zbl 0139.46003

[3] H. Araki, Einführung in die axiomatische Quantenfeldtheorie. ETH Zürich 1961-1962.

[4] H.J. Borchers and W. Zimmermann, On the self-adjointness of field operators. Nuovo Cim., t. 31, 1963, p. 1047. | MR 161607 | Zbl 0151.44303

[5] W. Driessler and J. Fröhlich, The reconstruction of local observable algebras from the Euclidean Green's functions of relativistic quantum field theory. Ann. Inst. H. Poincaré, t. 27, 1977, p. 221. | Numdam | MR 484123 | Zbl 0364.46051

[6] Fredenhagen and J. Hertel, Local algebras of observables and pointlike localized fields. Commun. Math. Phys., t. 80, 1981, p. 555. | MR 628511 | Zbl 0472.46051

[7] W. Driessler, S.J. Summers and E.H. Wichmann, On the connection between quantum fields and von Neumann algebras of local operators. Commun. Math. Phys., t. 105, 1986, p. 49. | MR 847127 | Zbl 0595.46062

[8] M. Dubois-Violette, A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory. I. Commun. Math. Phys., t. 43, 1975, p. 225. | MR 383100 | Zbl 0362.46044

[9] M. Dubois-Violette, A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory. II. Commun. Math. Phys., t. 54, 1977, p. 151. | MR 440369 | Zbl 0365.46060

[10] H.J. Borchers, On the structure of the algebra of field operators. Nuovo Cim,. t. 24, 1962, p. 214. | MR 142320 | Zbl 0129.42205

[11] A. Uhlmann, Über die Definition der Quantenfelder nach Wightman und Haag. Wiss. Zeitschr., Karl Marx Univ., t. 11, 1962, p. 213. | MR 141413 | Zbl 0119.43804

[12] G. Choquet, Lectures on Analysis, vol. 2, New York, Benjamin, 1984.

[13] H. Araki and G.A. Elliott, On the definition of C*-algebras. Publ. RIMS Kyoto, t. 9, 1973, p. 93. | MR 355611 | Zbl 0272.46033

[14] J. Yngvason, On the locality ideal in the algebra of test functions for quantum fields. Publ. RIMS Kyoto, t. 20, 1984, p. 1063. | MR 764348 | Zbl 0598.46047

[15] H.J. Borchers, C*-algebras and automorphism groups. Commun. Math. Phys., t. 88, 1983, p. 95. | MR 691200 | Zbl 0524.46047

[16] G.K. Pedersen, C*-algebras and their Automorphism Groups. London, New York, San Francisco, Academic Press, 1979. | MR 548006 | Zbl 0416.46043