“Geometry” of spin 3 gauge theories
Damour, T. ; Deser, S.
Annales de l'I.H.P. Physique théorique, Tome 47 (1987), p. 277-307 / Harvested from Numdam
Publié le : 1987-01-01
@article{AIHPA_1987__47_3_277_0,
     author = {Damour, Thibault and Deser, Stanley},
     title = {``Geometry'' of spin 3 gauge theories},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {47},
     year = {1987},
     pages = {277-307},
     mrnumber = {921308},
     zbl = {0623.53031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1987__47_3_277_0}
}
Damour, T.; Deser, S. “Geometry” of spin 3 gauge theories. Annales de l'I.H.P. Physique théorique, Tome 47 (1987) pp. 277-307. http://gdmltest.u-ga.fr/item/AIHPA_1987__47_3_277_0/

[1] B. De Wit and D.Z. Freedman, Phys. Rev., t. D 21, 1980, p. 358.

[2] A.K.H. Bengtsson and I. Bengtsson, Class. Quant. Grav., t. 3, 1986, p. 927.

[3] T. Damour and S. Deser, Class. Quant. Grav., t. 4, 1987, p. L95. | MR 895891

[4] C. Aragone, S. Deser and Z. Yang, Ann. Phys., october 1987, in press.

[5] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman, San Francisco, 1973. | MR 418833

[6] R. Penrose and W. Rindler, Spinors and space-time, Cambridge University Press, Cambridge, 1984; for Young tableau symmetry see pp. 143-146. | MR 776784 | Zbl 0538.53024

[7] H. Weyl, The classical groups, Princeton University Press, Princeton, 1946. | MR 1488158

[8] M. Hamermesh, Group theory and its application to physical problems, Addison-Wesley, Reading, 1962; H. Boerner, Representations of groups, North-Holland, Amsterdam, 1963. | MR 136667 | Zbl 0100.36704

[9] J.S. Frame, G. De B. Robinson and R.M. Thrall, Can. J. Math., t. 6, 1954, p. 316. | MR 62127 | Zbl 0055.25404

[10] B.G. Schmidt, Commun. Math. Phys., t. 36, 1974, p. 73; H. Friedrich and B.G. Schmidt, Proc. Roy. Soc. (London), in press. | Zbl 0282.53042

[11] F.A.E. Pirani, in Lectures on General Relativity, (1964, Brandeis summer lectures), S. Deser and K. W. Ford editors, Prentice-Hall, Englewood Cliffs, 1965, p. 249.

[12] L. Bel, C. R. Acad. Sc. Paris, t. 247, 1958, p. 1094; and t. 248, 1959, p. 1297. | MR 99871 | Zbl 0082.41204

[13] L.P. Eisenhart, Riemannian geometry, Princeton University Press, Princeton, 1949 ; § 28. | MR 35081 | Zbl 0041.29403

[14] E. Cotton, C. R. Acad. Sc. Paris, t. 127, 1898, p. 349-351 (where it is stated that a 3-geometry is conformally flat iff the covariant 3-tensor C3 = V 1 × S2 vanishes); E. COTTON, Ann. de Toulouse (2e série), t. 1, 1899, p. 385-438 (where full proofs are given, and where the dual (D2 in our notation, see eq. (4. 3 a) of the text) of C3 is introduced). | JFM 29.0573.03

[15] W. Siegel, Nucl. Phys. B., t. 156, 1979, p. 135. | MR 541505

[16] J. Schonfeld, Nucl. Phys. B., t. 185, 1981, p. 157.

[17] R. Jackiw and S. Templeton, Phys. Rev. D., t. 23, 1981, p. 2291.

[18] S. Deser, R. Jackiw and S. Templeton, Phys. Rev. Lett., t. 48, 1982, p. 975; Ann. Phys., t. 140, 1982, p. 372. | MR 665601