Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum
Celletti, Alessandra ; Falcolini, Corrado ; Porzio, Anna
Annales de l'I.H.P. Physique théorique, Tome 47 (1987), p. 85-111 / Harvested from Numdam
Publié le : 1987-01-01
@article{AIHPA_1987__47_1_85_0,
     author = {Celletti, Alessandra and Falcolini, Corrado and Porzio, Anna},
     title = {Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {47},
     year = {1987},
     pages = {85-111},
     mrnumber = {912758},
     zbl = {0636.70017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1987__47_1_85_0}
}
Celletti, Alessandra; Falcolini, Corrado; Porzio, Anna. Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum. Annales de l'I.H.P. Physique théorique, Tome 47 (1987) pp. 85-111. http://gdmltest.u-ga.fr/item/AIHPA_1987__47_1_85_0/

[1] G. Gallavotti, The Elements of Mechanics, Springer, 1983. | MR 698947 | Zbl 0512.70001

[2] G. Gallavotti, Perturbation theory for classical hamiltonian systems, « Scaling and Self Similarity », Progress in Physics, t. 7, 1984. | MR 733479

[3] G. Gallavotti, Quasi integrable mechanical systems, Les Houches Summer School 1984, procendings, ed. K. Osterwalder, R. Stora, North Holland, 1986 (in print). | MR 880535 | Zbl 0662.70022

[4] G. Inglese, Thesis. Stime di stabilità in presenza di piccoll denominatori nel caso di sistemi hamiltoniani unidimensionali non autonomi, Roma, 1980.

[5] A. Porzio, Stability bounds for the existence of KAM tori in a forced pendulum, in print: Boll. Unione Matematica Italiana, 1986. | MR 841619 | Zbl 0605.70015

[6] A. Celletti, C. Falcolini, A. Porzio, Rigorous KAM stability statements for non autonomous one-dimensional hamiltonian systems, 1986. | Zbl 0682.70019

[7] D. Escande, F. Doveil, Renormalization method for computing the threshold of the large scale stochasticity in two degrees of freedom hamiltonian systems. Journ. Stat. Phys., t. 26, 1981, p. 2. | MR 643709

[8] G.H. Hardy, E.M. Wright, The theory of numbers, Oxford, 1979. | Zbl 0423.10001

[9] M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments. Astr. Journ., t. 69, 1964, p. 1. | MR 158746

[10] M. Hénon, Exploration numérique du problème restreint. Ann. d'Astroph., t. 28, 1965, p. 3. | Zbl 0138.23803

[11] G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli, J.M. Strelcyn, Nuovo Cimento, t. 50 B, 1979, p. 211. | MR 534103

[12] B. Chirikov, Phys. Rep., t. 52, 1979.

[13] J. Greene, Journ. of Math. Phys., t. 20, 1979.

[14] C. Liverani, G. Servizi, G. Turchetti, Lettere al Nuovo Cimento, t. 39, 1984, p. 417. | MR 746559

[15] C. Liverani, G. Turchetti, Improved KAM estimates for the Siegel radius, 1985. | MR 881322 | Zbl 0644.70019

[16] A. Celletti, L. Chierchia, Rigorous Estimates for a Computer-Assisted KAM theory, to appear in J. of Math. Phys. | MR 904422 | Zbl 0651.58011

[17] Vax-11 Fortran IV, Plus, Language reference manual, Digital Equipment Corporation, Maynard, Massachusetts, 1978.

[18] G. Benettin, L. Galgani, A. Giorgilli, Classical perturbation theory for systems of weakly coupled rotators, 1984. | MR 818425

[19] Vax-11 Fortran IV, Plus, User's Guide, Digital Equipment Corporation, Maynard, Massachusetts, 1978.

[20] Vax-11 Fortran IV, Plus, Run-time library reference manual, Digital Equipment Corporation, Maynard, Massachusetts, 1978.

[21] D. Escande, private communication.