Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections
Robert, Didier ; Tamura, Hideo
Annales de l'I.H.P. Physique théorique, Tome 47 (1987), p. 415-442 / Harvested from Numdam
@article{AIHPA_1987__46_4_415_0,
     author = {Robert, Didier and Tamura, Hideo},
     title = {Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {47},
     year = {1987},
     pages = {415-442},
     mrnumber = {912158},
     zbl = {0648.35066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1987__46_4_415_0}
}
Robert, Didier; Tamura, Hideo. Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections. Annales de l'I.H.P. Physique théorique, Tome 47 (1987) pp. 415-442. http://gdmltest.u-ga.fr/item/AIHPA_1987__46_4_415_0/

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa, t. 2, 1975, p. 151-218. | Numdam | MR 397194 | Zbl 0315.47007

[2] V. Enss and B. Simon, Finite total cross sections in nonrelativistic quantum mechanics. Comm. Math. Phys., t. 76, 1980, p. 177-209. | MR 587510 | Zbl 0471.35065

[3] T. Ikebe and Y. Saito, Limiting absorption method and absolute continuity for the Schrödinger operator. J. Math. Kyoto Univ., t. 12, 1972, p. 513-542. | MR 312066 | Zbl 0257.35022

[4] H. Isozaki, On the generalized Fourier transforms associated with Schrödinger operators with long-range perturbations. J. Reine Angew. Math., t. 337, 1982, p. 18-67. | MR 676041 | Zbl 0486.35026

[5] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., t. 32, 1985, p. 77-104. | MR 783182 | Zbl 0582.35036

[6] H. Kitada and K. Yajima, A scattering theory for time-dependent long-range potentials. Duke Math. J., t. 49, 1982, p. 341-376. | MR 659945 | Zbl 0499.35087

[7] E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators. Comm. Math. Phys., t. 78, 1981, p. 391-408. | MR 603501 | Zbl 0489.47010

[8] M. Murata, High energy resolvent estimates I, first order operators, and II, higher order elliptic operators. J. Math. Soc. Japan, t. 35, 1983, p. 711-733, and t. 36, 1984, p. 1-10. | MR 714471 | Zbl 0513.35010

[9] P. Perry, I.M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators. Ann. of Math., t. 114, 1981, p. 519-567. | MR 634428 | Zbl 0477.35069

[10] M. Reed and B. Simon, Methods of modern mathematical physics, III, Scattering theory, Academic Press, 1979. | MR 529429 | Zbl 0405.47007

[11] D. Robert, Autour de l'approximation semi-classique. Notas de Curso. Instituto de Math., no 21, Recife, 1983 et PM 68, Birkhaüser, 1987. | MR 897108 | Zbl 0621.35001

[12] D. Robert and H. Tamura, Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scattering phases. Comm. Partial Differ. Equ., t. 9, 1984, p. 1017-1058. | MR 755930 | Zbl 0561.35021

[13] A.V. Sobolev and D.R. Yafaev, On the quasi-classical limit of the total scattering cross-section in nonrelativistic quantum mechanics. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 195-210. | Numdam | MR 839284 | Zbl 0607.35070

[14] B.R. Vainberg, On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as t → ∞ of solutions of non-stationary problems. Russian Math. Surveys, t. 30, 1975, p. 1-58. | MR 415085 | Zbl 0318.35006

[15] B.R. Vainberg, Quasi-classical approximation in stationary scattering problems. Func. Anal. Appl., t. 11, 1977, p. 6-18. | Zbl 0381.35022

[16] D.R. Yafaev, The eikonal approximation and the asymptotics of the total cross-section for the Schrödinger equation. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 397- 425. | Numdam | MR 850898 | Zbl 0608.35054

[17] K. Yajima, The quasi-classical limit of scattering amplitude - finite range potentials-. Lecture Notes in Math., 1159, Springer, 1984. | MR 824991 | Zbl 0591.35079

[18] K. Yajima, The quasi-classical limit of scattering amplitude - L2 approach for short range potentials -, Preprint, 1985. | MR 824991