@article{AIHPA_1986__45_2_147_0, author = {Thaller, Bernd and Enss, Volker}, title = {Asymptotic observables and Coulomb scattering for the Dirac equation}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {45}, year = {1986}, pages = {147-171}, mrnumber = {866913}, zbl = {0615.47008}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1986__45_2_147_0} }
Thaller, Bernd; Enss, Volker. Asymptotic observables and Coulomb scattering for the Dirac equation. Annales de l'I.H.P. Physique théorique, Tome 45 (1986) pp. 147-171. http://gdmltest.u-ga.fr/item/AIHPA_1986__45_2_147_0/
[1] Essential self-adjointness of powers of generators of hyperbolic equations. J. Func. Anal., t. 12, 1973, p. 401-414. | MR 369890 | Zbl 0263.35066
,[2] Asymptotic behaviour of a Dirac particle in a Coulomb field. Il Nuovo Cimento, t. 45, 1966, p. 801-812.
and ,[3] Geometric methods in spectral and scattering theory of Schrödinger operators. In: Rigorous Atomic and Molecular Physics, G. Velo, A. S. Wightman (eds). New York, Plenum, 1981.
,[4] Asymptotic observables on scattering states. Commun. Math. Phys., t. 89, 1983, p. 245-268. | MR 709466 | Zbl 0543.47008
,[5] Propagation properties of quantum scattering states. J. Func. Anal., t. 52, 1983, p. 219-251. | MR 707205 | Zbl 0543.47009
,[6] Quantum scattering theory for two and three-body systems with potentials of short and long range. In: Schrödinger Operators, S. Graffi (ed.), Lecture Notes in Mathem., 1159, Springer, Berlin, 1985, p. 39-176. | MR 824987 | Zbl 0585.35023
,[7] On the space-time behaviour of Schrödinger wavefunctions. J. Math. Phys., t. 7, 1966, p. 300-304. | MR 193939 | Zbl 0151.43801
,[8] The localization problem. In: Problems in the Foundations of Physics, t. 4, M. Bunge (ed.). Berlin, Springer, 1971.
,[9] Characterization and uniqueness of distinguished self-adjoint extensions of Dirac-operators. Commun. Math. Phys., t. 64, 1979, p. 171-176. | MR 519923 | Zbl 0408.47022
and ,[10] Scattering theory by Enss' method for operator valued matrices: Dirac operator in an electric field, J. Math. Soc. Japan, t. 37, 1985, p. 415-432. | MR 792984 | Zbl 0581.47006
,[11] Asymptotic completeness in long-range scattering II. Ann. scient. Ec. Norm. Sup., t. 18, 1985, p. 57-87. | Numdam | MR 803195 | Zbl 0584.47009
and ,[12] Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Commun. Math. Phys., t. 48, 1976, p. 235-247. | MR 421456 | Zbl 0349.47014
,[13] Scattering theory by the Enss Method. Mathematical Reports, t. 1, Harwood, Chur., 1983. | MR 752694 | Zbl 0875.47001
,[14] Invariant domains for the time-dependent Schrödinger equation. J. Diff. Equ., t. 29, 1978, p. 289-296. | MR 502354 | Zbl 0351.34004
and ,[15] Methods of Modern Mathematical Physics I, Functional Analysis. New York, Academic Press, 1972. | MR 493419 | Zbl 0242.46001
and ,[16] Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness. New York, Academic Press, 1975. | MR 493420 | Zbl 0308.47002
and ,[17] Methods of Modern Mathematical Physics III, Scattering Theory. New York, Academic Press, 1979. | MR 529429 | Zbl 0405.47007
and ,[18] 24, 1930, p. 418. | JFM 56.0754.06
, Sitzungsb. Preuss. Akad. Wiss., Phys.-Math. Kl., t.[19] Asymptotic evolution of certain observables and completeness in Coulomb scattering I. J. Func. Anal., t. 55, 1984, p. 323- 343. | MR 734802 | Zbl 0531.47008
and ,[20] Distinguished self-adjoint extension of Dirac operators constructed by means of cut-off potentials. Math. Z., t. 141, 1975, p. 93-98. | MR 365233 | Zbl 0311.47020
,[21] Relativistic scattering theory for long-range potentials of non-electrostatic type. Lett. Math. Phys., to appear 1986. | MR 849249 | Zbl 0643.35078
,[22] Existence and completeness of wave operators for the Dirac operator in an electro-magnetic field with long-range potentials. Preprint, New Delhi, 1986. | MR 989018
and ,