@article{AIHPA_1985__43_4_369_0, author = {Balslev, Erik and Skibsted, Erik}, title = {Boundedness of two- and three-body resonances}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {43}, year = {1985}, pages = {369-397}, mrnumber = {824082}, zbl = {0597.35027}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1985__43_4_369_0} }
Balslev, Erik; Skibsted, Erik. Boundedness of two- and three-body resonances. Annales de l'I.H.P. Physique théorique, Tome 43 (1985) pp. 369-397. http://gdmltest.u-ga.fr/item/AIHPA_1985__43_4_369_0/
[1] Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa, Class. Sci., Ser. IV, II, 1975, p. 151-218. | Numdam | MR 393882 | Zbl 0315.47007
,[2] Analytic scattering theory of two-body Schrödinger operators, J. Funct. Analysis, t. 29, n° 3, 1978, p. 375-396. | MR 512251 | Zbl 0392.47003
,[3] Decomposition of many-body Schrödinger operators, Comm. Math. Phys. t. 52, 1977, p. 127-146. | MR 438950 | Zbl 0352.35038
,[4] Analytic scattering theory of quantum-mechanical three-body systems, Ann. Inst. Henri Poincaré, Vol. XXXII, n° 2, 1980, p. 125-160. | Numdam | MR 580324 | Zbl 0428.47003
,[5] Resonances in three-body scattering theory, Adv. Appl. Math., t. 5, 1984, p. 260-285. | MR 755381 | Zbl 0617.47008
,[6] Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-299. | MR 345552 | Zbl 0219.47005
and ,[7] Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré, Vol. XXI, n° 2, 1974, p. 97-145. | Numdam | MR 368656 | Zbl 0311.47003
and ,[8] Asymptotic completeness for multiparticle Schrödinger Hamiltonians with weak potentials, Comm. Math. Phys., t. 27, 1972, p. 137-145. | MR 314392
and ,[9] Local decay in time of solutions to Schrödinger's equation with dilation-analytic interaction, Manuscripta Math., 1978, t. 25, p. 61-77. | MR 492959 | Zbl 0397.35056
,[10] Scattering theory of waves and particles, 2nd edition, Springer-Verlag, 1982. | MR 666397 | Zbl 0496.47011
,[11] Methods of modern mathematical physics, III and IV. New York, Academic Press, 1979 and 1978. | MR 529429
and ,[12] Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, 1971. | MR 455975 | Zbl 0232.47053
,[13] Quadratic form techniques and the Balslev-Combes theorem, Comm. Math. Phys., t. 27, 1972, p. 1-12. | MR 321456 | Zbl 0237.35025
,[14] Resonances of Schrödinger operators with potentials. V(r) = γrβe-ζrα, β > - 2, ζ > 0 and α > 1, to appear in J. Math. Anal. Appl. | MR 843011 | Zbl 0611.35014
,