Boundedness of two- and three-body resonances
Balslev, Erik ; Skibsted, Erik
Annales de l'I.H.P. Physique théorique, Tome 43 (1985), p. 369-397 / Harvested from Numdam
@article{AIHPA_1985__43_4_369_0,
     author = {Balslev, Erik and Skibsted, Erik},
     title = {Boundedness of two- and three-body resonances},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {43},
     year = {1985},
     pages = {369-397},
     mrnumber = {824082},
     zbl = {0597.35027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1985__43_4_369_0}
}
Balslev, Erik; Skibsted, Erik. Boundedness of two- and three-body resonances. Annales de l'I.H.P. Physique théorique, Tome 43 (1985) pp. 369-397. http://gdmltest.u-ga.fr/item/AIHPA_1985__43_4_369_0/

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa, Class. Sci., Ser. IV, II, 1975, p. 151-218. | Numdam | MR 393882 | Zbl 0315.47007

[2] E. Balslev, Analytic scattering theory of two-body Schrödinger operators, J. Funct. Analysis, t. 29, n° 3, 1978, p. 375-396. | MR 512251 | Zbl 0392.47003

[3] E. Balslev, Decomposition of many-body Schrödinger operators, Comm. Math. Phys. t. 52, 1977, p. 127-146. | MR 438950 | Zbl 0352.35038

[4] E. Balslev, Analytic scattering theory of quantum-mechanical three-body systems, Ann. Inst. Henri Poincaré, Vol. XXXII, n° 2, 1980, p. 125-160. | Numdam | MR 580324 | Zbl 0428.47003

[5] E. Balslev, Resonances in three-body scattering theory, Adv. Appl. Math., t. 5, 1984, p. 260-285. | MR 755381 | Zbl 0617.47008

[6] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-299. | MR 345552 | Zbl 0219.47005

[7] J. Ginibre and M. Moulin, Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré, Vol. XXI, n° 2, 1974, p. 97-145. | Numdam | MR 368656 | Zbl 0311.47003

[8] R.J. Iorio and M. O'Carroll, Asymptotic completeness for multiparticle Schrödinger Hamiltonians with weak potentials, Comm. Math. Phys., t. 27, 1972, p. 137-145. | MR 314392

[9] A. Jensen, Local decay in time of solutions to Schrödinger's equation with dilation-analytic interaction, Manuscripta Math., 1978, t. 25, p. 61-77. | MR 492959 | Zbl 0397.35056

[10] R. Newton, Scattering theory of waves and particles, 2nd edition, Springer-Verlag, 1982. | MR 666397 | Zbl 0496.47011

[11] M. Reed and B. Simon, Methods of modern mathematical physics, III and IV. New York, Academic Press, 1979 and 1978. | MR 529429

[12] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, 1971. | MR 455975 | Zbl 0232.47053

[13] B. Simon, Quadratic form techniques and the Balslev-Combes theorem, Comm. Math. Phys., t. 27, 1972, p. 1-12. | MR 321456 | Zbl 0237.35025

[14] E. Skibsted, Resonances of Schrödinger operators with potentials. V(r) = γrβe-ζrα, β > - 2, ζ > 0 and α > 1, to appear in J. Math. Anal. Appl. | MR 843011 | Zbl 0611.35014