@article{AIHPA_1985__43_3_349_0, author = {Gutkin, D.}, title = {Vari\'et\'es bi-structur\'ees et op\'erateurs de r\'ecursion}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {43}, year = {1985}, pages = {349-357}, mrnumber = {824844}, zbl = {0587.58015}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIHPA_1985__43_3_349_0} }
Gutkin, D. Variétés bi-structurées et opérateurs de récursion. Annales de l'I.H.P. Physique théorique, Tome 43 (1985) pp. 349-357. http://gdmltest.u-ga.fr/item/AIHPA_1985__43_3_349_0/
[1] A geometrical approach to the nonlinear solvable equations, Lecture Notes in Physics, t. 120, Springer-Verlag, 1980, p. 233-263. | MR 581899
,[2] A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, preprint Milano Univ., 1984.
, ,[3] Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. Communications in Mathematical Physics, t. 99, 1985, p. 115-140. | MR 791643 | Zbl 0602.58017
, , ,[4] A geometrical characterization of completely integrable systems, in Proceedings of the meeting « Geometry and Physics », Florence, 1982, p. 257- 262. | MR 760848 | Zbl 0548.58018
,[5] A new characterization of completely integrable systems, preprint Salerno Univ., 1983.
, , , ,[6] A geometrical approach to the integrability of soliton equations. Letters in Mathematical Physics, t. 9, n° 2, 1985, p. 85-91. | MR 785860 | Zbl 0586.35087
, , .[7] The Lie algebra structure of degenerate Hamiltonian and bihamiltonian systems, Progress of Theoretical Physics, t. 68, n° 4, 1982, p. 1082- 1104. | MR 688120 | Zbl 01662564
,[8] Les variétés de Poisson et leurs algèbres de Lie associées, Journal of Differential Geometry, t. 12, 1977, p. 253-300. | MR 501133 | Zbl 0405.53024
.[9] Poisson manifolds in mechanics, in Bifurcation Theory, Mechanics and Physics, Reidel Publishing Company, 1983, p. 47-76. | MR 726243 | Zbl 0525.58019
,[10] Cours de 3e cycle, Université de Lille, 1984.
,[11] Symplectic manifolds and their Lagrangian submanifolds, Advances in Mathematics, t. 6, 1971, p. 329-346. | MR 286137 | Zbl 0213.48203
,[12] Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978. | MR 690288 | Zbl 0386.70001
,