@article{AIHPA_1985__43_3_269_0, author = {Wang, Xue Ping}, title = {Puits multiples pour l'op\'erateur de Dirac}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {43}, year = {1985}, pages = {269-319}, mrnumber = {824842}, zbl = {0614.35074}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIHPA_1985__43_3_269_0} }
Wang, Xue Ping. Puits multiples pour l'opérateur de Dirac. Annales de l'I.H.P. Physique théorique, Tome 43 (1985) pp. 269-319. http://gdmltest.u-ga.fr/item/AIHPA_1985__43_3_269_0/
[1] Foundations of Mechanics, 2nd Ed., Benjamin, Cumming Publ. Company, 1978. | MR 515141 | Zbl 0393.70001
, ,[2] Lectures on exponential decay of solutions of second order elliptic equations, Math. Notes, t. 29, Princeton University Press, 1982. | MR 745286 | Zbl 0503.35001
,[3] Sur le spectre ponctuel de l'opérateur de Dirac. C. R. Acad. Sci. Paris, t. 297, 1983, Série I, p. 335-338. | MR 732500 | Zbl 0546.35052
, ,[4] Schrödinger and Dirac operators with singular potentials and hyperbolic equations, Pac. J. Math., t. 72 (2), 1977, p. 361-383. | MR 510049 | Zbl 0366.35031
,[5] Krein's formula and one dimensional multiple well, J. Funct. Anal., t. 52, 1983, p. 257-301. | MR 707207 | Zbl 0562.47002
, , ,[6] Convergent Expansion for Tunneling, Comm. Math. Phys., t. 92, 1982, p. 229-245. | MR 728868 | Zbl 0579.47050
, , ,[7] Double Well, Comm. Math. Phys., t. 75, 1980, p. 239-261. | MR 581948 | Zbl 0445.35036
,[8] On the double-well problem for Dirac operators, Ann. Inst. Henri Poincaré, t. 38 (2), 1983, p. 153-166. | Numdam | MR 705337 | Zbl 0529.35062
, ,[9] Calcul fonctionnel par la transformation de Mellin et applications, J. Funct. Anal., t. 53 (3), 1983, p. 245-268. | Zbl 0524.35103
, ,[10] Puits de potentiel généralisés et asymptotique semi-classique, Ann. Inst. Henri Poincaré, Sect. A, t. 41, 1984, p. 291-332. | Numdam | MR 776281 | Zbl 0565.35082
, ,[11] Multiple wells in the semi-classical limit I, Comm. P. D. E., t. 9 (4), 1984, p. 337-408. | MR 740094 | Zbl 0546.35053
, ,[12] Puits multiples et limites semi-classique II. Interaction moléculaire, symétries, perturbation, Ann. Inst. Henri Poincaré, section Phys. Théorique, t. 42, 1985, p. 127-212. | Numdam | MR 798695 | Zbl 0595.35031
, ,[13] Multiple wells in the semi-classical limi III. Interaction through non-resonnant wells, à paraître Mathematisch Nachrichte. | Zbl 0597.35023
, ,[14] On the point spectrum of Dirac operators, Helv. Phys. Acta, t. 53, 1980, p. 453-462. | MR 611769
,[15] Spectral properties of Dirac operators with singular potentials, J. Math. Anal. and Appl., t. 72, 1979, 206-214. | MR 552332 | Zbl 0423.47014
, ,[16] Analyse Lagrangienne, Collège de France, 1976-1977. | MR 501198
,[17] Solution Asymptotique de l'équation de Dirac, in Trends in Applications of Pure Mathematics to Mechanics, Pitman, 1976, p. 233-240. | Zbl 0346.35092
,[18] Semi-classical Approximation in Quantum Mechanics, D. Reidel, 1981. | Zbl 0458.58001
, ,[19] The two centre Dirac equation; Z. Naturforsch., t. 30 (1), 1976, p. 1-30.
, ,[20] Approximation Semi-classique du spectre de systèmes asymptotiques, C. R. Acad. Sci. Paris, t. 295, 1982, p. 253-256. | Zbl 0535.58040
,[21] Calcul fonctionnel sur les opérateurs admissibles et application, J. Funct. Anal., t. 45 (1), 1982, p. 74-94. | MR 645646 | Zbl 0482.35069
,[22] Autour de l'Approximation Semi-classique, Notas de Curso, N° 21, Universidada Federal de Pernambuco, Recife, 1983.
,[23] Représentations Linéaires des Groupes Finis, Hermann, Paris, 1967. | MR 232867 | Zbl 0189.02603
,[24] Semi-classical analysis of low lying eigenvalues, I. Non-degenerate minima: Asymptotic expansions, Ann. Inst. Henri Poincaré, t. 38, 1983, p. 295- 307. | Numdam | MR 708966 | Zbl 0526.35027
,[25] Semi-classical analysis of low lying eigenvalues, II. Tunneling, Ann. of Math., t. 120, 1984, p. 89-118. | MR 750717 | Zbl 0626.35070
,[26] Asymptotic behavior of spectral means of pseudo-differential operators, J. of Appr. Theory and Appl., t. 1, 1985, p. 119-136. | MR 816606 | Zbl 0595.47036
,[27] Fermion Quantum Numbers in Kaluza-Klein Theory, prétirage.
,[28] The quasi-classical approximation to Dirac equation, I. J. Fac. Sci. Univ. Tokyo, t. 29, 1982, p. 161-194. | Zbl 0486.35075
,