The short-range expansion in solid state physics
Holden, Helge ; Høegh-Krohn, Raphael ; Johannesen, Steinar
Annales de l'I.H.P. Physique théorique, Tome 41 (1984), p. 335-362 / Harvested from Numdam
Publié le : 1984-01-01
@article{AIHPA_1984__41_4_335_0,
     author = {Holden, Helge and H\o egh-Krohn, Raphael and Johannesen, Steinar},
     title = {The short-range expansion in solid state physics},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {41},
     year = {1984},
     pages = {335-362},
     mrnumber = {777911},
     zbl = {0594.46066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1984__41_4_335_0}
}
Holden, Helge; Høegh-Krohn, Raphael; Johannesen, Steinar. The short-range expansion in solid state physics. Annales de l'I.H.P. Physique théorique, Tome 41 (1984) pp. 335-362. http://gdmltest.u-ga.fr/item/AIHPA_1984__41_4_335_0/

[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, The low energy expansion in non-relativistic scattering theory. Ann. Inst. H. Poincaré, Sec. A, t. 37, 1982, p. 1-28. | Numdam | Zbl 0528.35076

[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, W. Kirsch. On point interactions in one dimension. J. Operator Theory, t. 12, 1984, p. 101-126. | MR 757115 | Zbl 0561.35023

[3] S. Albeverio, R. Høegh-Krohn, Point interactions as limits of short range interactions. J. Operator Theory, t. 6, 1981, p. 313-339. | MR 643694 | Zbl 0501.35023

[4] R. Grossmann, R. Høegh-Krohn, M. Mebkhout, A class of explicitly soluble, local, many-center. Hamiltonians for one-particle quantum mechanics in two and three dimensions I. J. Math. Phys., t. 21, 1980, p. 2367-2385. | MR 585589

[5] A. Grossmann, R. Høegh-Krohn, M. Mebkhout, The one-particle theory of periodic point interactions. Commun. Math. Phys., t. 77, 1980, p. 87-110. | MR 588688

[6] R. Høegh-Krohn, H. Holden, F. Martinelli, The spectrum of defect periodic point interactions. Lett. Math. Phys., t. 7, 1983, p. 221-228. | MR 706211 | Zbl 0539.47003

[7] H. Holden, R. Høegh-Krohn, S. Johannesen. The Short-Range Expansion. Adv. in Appl. Math., t. 4, 1983, p. 402-421. | MR 725903 | Zbl 0546.35019

[8] T. Kato, Perturbation Theory for Linear Operators. Corr. print of 2nd ed. 1980, Springer Verlag N. Y. | Zbl 0435.47001

[9] R. De L. Kronig, W.G. Penney, Quantum Mechanics of Electrons in Crystal Lattices. Proc. Roy. Soc. London Ser. A, t. 130, 1931, p. 499-513. | JFM 57.1587.02 | Zbl 0001.10601

[10] M. Reed, B. Simon, Methods of modern mathematical physics, II. Fourier Analysis, Self-Adjointness. Academic Press, N. Y. 1975. | MR 493420 | Zbl 0308.47002

[11] M. Reed, B. Simon, Methods of modern mathematical physics, IV, Analysis of Operators. Academic Press, N. Y., 1978. | MR 493421 | Zbl 0401.47001

[12] B. Simon, Notes on Infinite Determinants of Hilbert Space Operators. Adv. in Math., t. 24, 1977, p. 244-273. | MR 482328 | Zbl 0353.47008

[13] B. Simon, Quantum Mechanicsfor Hamiltonians Defined as Quadratic Forms. Princeton Univ. Press, 1971. | MR 455975 | Zbl 0232.47053