An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential
Cycon, Hans L.
Annales de l'I.H.P. Physique théorique, Tome 39 (1983), p. 385-392 / Harvested from Numdam
@article{AIHPA_1983__39_4_385_0,
     author = {Cycon, Hans L.},
     title = {An upper bound for the local time-decay of scattering solutions for the Schr\"odinger equation with Coulomb potential},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {39},
     year = {1983},
     pages = {385-392},
     mrnumber = {733689},
     zbl = {0538.35025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1983__39_4_385_0}
}
Cycon, Hans L. An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) pp. 385-392. http://gdmltest.u-ga.fr/item/AIHPA_1983__39_4_385_0/

[1] W.O. Amrein, M.J. Jauch, K.B. Sinha, Scattering theory in Quantum Mechanics, Benjamin, Reading, Mass, 1977. | MR 495999 | Zbl 0376.47001

[2] H.L. Cycon, Absence of singular continuous spectrum for two body Schrödinger operators with long-range potentials (a new proof). Proc. of Roy. Soc. of Edinburgh, t. 94 A, 1983, p. 61-69. | MR 700499 | Zbl 0523.35034

[3] J.D. Dollard, Quantum mechanical scattering theory for short-range and Coulomb interactions, Rocky Mountain J. of Math., t. 1, n° 1, 1971, p. 5-88. | MR 270673 | Zbl 0226.35074

[4] A. Jensen, Local decay in time of solutions to Schrödinger's equation with a dilatation-analytic interaction, manuscripta math., t. 25, 1978, p. 61-77. | MR 492959 | Zbl 0397.35056

[5] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions; results in L2(Rm), m ≥ 5, Duke Math. J., t. 47, n° 1, 1980, p. 57-80. | MR 563367 | Zbl 0437.47009

[6] A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time decay of the wave functions, Duke Math. J., t. 46, n° 3, 1979, p. 583-611. | MR 544248 | Zbl 0448.35080

[7] T. Kato, Perturbation theory for linear operators, Berlin, Heidelberg, New York, Springer, 1966. | MR 203473 | Zbl 0148.12601

[8] H. Kitada, Time decay of the high energy part of the solutionfor a Schrödinger equation, preprint University of Tokyo, 1982. | MR 743522

[9] M. Murata, Scattering solutions decay at least logarithmically, Proc. Jap. Ac., t. 54, Ser. A, 1978, p. 42-45. | MR 486379 | Zbl 0395.35022

[10] J. Rauch, Local decay of Scattering solutions to Schrödinger's equation, Comm. Math. Phys., t. 61, 1978, p. 149-168. | MR 495958 | Zbl 0381.35023

[11] M. Reed, B. Simon, Methods of modern mathematical physics III, Scattering theory, Acad. press, 1979. | MR 529429 | Zbl 0405.47007

[12] M. Reed, B. Simon, Methods of modern mathematical physics IV. Analysis of operators, Acad. press, 1978. | MR 493421 | Zbl 0401.47001