Bound states and propagating states for time-dependent hamiltonians
Enss, Volker ; Veselić, Krešimir
Annales de l'I.H.P. Physique théorique, Tome 39 (1983), p. 159-191 / Harvested from Numdam
@article{AIHPA_1983__39_2_159_0,
     author = {Enss, Volker and Veseli\'c, Kre\v simir},
     title = {Bound states and propagating states for time-dependent hamiltonians},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {39},
     year = {1983},
     pages = {159-191},
     mrnumber = {722684},
     zbl = {0532.47007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1983__39_2_159_0}
}
Enss, Volker; Veselić, Krešimir. Bound states and propagating states for time-dependent hamiltonians. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) pp. 159-191. http://gdmltest.u-ga.fr/item/AIHPA_1983__39_2_159_0/

[1] W.O. Amrein, V. Georgescu, On the characterization of bound states and scattering states in Quantum Mechanics, Helv. Phys. Acta, t. 46, 1973, p. 635-657. | MR 363267

[2] V. Enss, Geometric methods in spectral and scattering theory of Schrödinger operators, in Rigorous Atomic and Molecular Physics, G. Velo and A. S. Wightman eds., Plenum, New York, 1981.

[3] V. Enss, Propagation Properties of Quantum Scattering States, J. Func. Anal., t. 52, 1983, p. 219-251. | MR 707205 | Zbl 0543.47009

[4] F. Gesztesy, H. Mitter, A note on quasi periodic states, J. Phys. A, t. 14, 1981, L79-L85. | MR 609823

[5] G.A. Hagedorn, An anolog of the Rage theorem for the impact parameter approximation to three particle scattering, Ann. Inst. H. Poincaré, t. 38, 1983, p. 59-68. | Numdam | MR 700700 | Zbl 0517.47009

[6] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Clarendon, Oxford, 1979. | MR 568909 | Zbl 0423.10001

[7] J. Howland, Scattering states of Schrödinger operators periodic in time, preprint Univ. Virginia, 1979.

[8] J. Howland, Complex scaling of AC Stark Hamiltonians, J. Math. Phys., t. 24, 1983, p. 1240-1244. | MR 702107

[9] D.B. Pearson, An example in potential scattering illustrating the breakdown of asymptotic completeness, Comm. Math. Phys., t. 40, 1975, p. 125-146. | MR 363285

[10] M. Reed, B. Simon, Methods of modern Mathematical Physics, t. I-IV, Academic Press, New York, 1975-1979.

[11] D. Ruelle, A remark on bound states in potential scattering theory, Nuovo Cim., t. 59 A, 1969, p. 655-662. | MR 246603

[12] W.R. Salzmann, Exact semiclassical solution for the time evolution of a quantum-mechanical system in a circularly polarized monochromatic driving field, Chem. Phys. Lett., t. 25, 1974, p. 302-304.

[13] V.I. Smirnov, Lehrgang der Höheren Mathematik, Dt. Verl. der Wissenschaften, Berlin, 1973.

[14] K. Veselić, On the characterisation of the bound and the scattering states for time dependent Hamiltonians, University of Dortmund preprint, 1979.

[15] K. Yajima, Resonances for the AC-Stark effect, Commun. Math. Phys., t. 87, 1982, p. 331-352. | MR 682111 | Zbl 0538.47010

[16] K. Yajima, H. Kitada, Bound States and scattering states for time periodic Hamiltonians, Ann. Inst. H. Poincaré, t. 39, 1983, p. 145-157. | Numdam | MR 722683 | Zbl 0544.35073

[17] H. Kitada, Time decay of the high energy part of the solution for a Schrödinger equation, preprint Univ. Tokyo, 1982. | MR 743522

[18] Multiphoton bibliography, J. H. Eberly et al. eds., Univ. of Colorado & Rochester, yearly.

[19] G. Tomšič, Homogeneous operators, Studia Math., t. 51, 1974, p. 1-5. | MR 358415