@article{AIHPA_1983__39_1_85_0, author = {Calderoni, P. and Pulvirenti, M.}, title = {Propagation of chaos for Burgers' equation}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {39}, year = {1983}, pages = {85-97}, mrnumber = {715133}, zbl = {0526.60057}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1983__39_1_85_0} }
Calderoni, P.; Pulvirenti, M. Propagation of chaos for Burgers' equation. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) pp. 85-97. http://gdmltest.u-ga.fr/item/AIHPA_1983__39_1_85_0/
[1] Lecture series in differential equations, t. II, p. 177, A. K. Aziz, Ed. Von Nostrand, 1969.
,[2] On a quasi-linear parabolic equation occurring in hydrodynamics. Q. Appl. Math., t. 9, 1951, p. 255. | MR 42889 | Zbl 0043.09902
,[3] Hydrodynamics in two dimensional vortex theory. Comm. Math. Phys., t. 84, 1982, p. 483. | MR 667756 | Zbl 0527.76021
, ,[4] | MR 534323
, Probability and Measure. John Wiley and Sons, 1979.[5] Symmetric measures on Cartesian products. Trans. Amer. Math. Soc., t. 80, 1955, p. 470-501. | MR 76206 | Zbl 0066.29604
, ,