@article{AIHPA_1983__38_3_295_0,
author = {Simon, Barry},
title = {Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions},
journal = {Annales de l'I.H.P. Physique th\'eorique},
volume = {39},
year = {1983},
pages = {295-308},
mrnumber = {708966},
zbl = {0526.35027},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPA_1983__38_3_295_0}
}
Simon, Barry. Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) pp. 295-308. http://gdmltest.u-ga.fr/item/AIHPA_1983__38_3_295_0/
[1] , Convergence Properties of the Intermolecular Force Series (1/r-Expansion), Theo. Chim. Acta, t. 41, 1976, p. 7.
[2] , and , Schrödinger Operators in Magnetic Fields III. Atoms and Ions in Constant Fields, Commun. Math. Phys., t. 79, 1981, p. 529-572. | MR 623966 | Zbl 0464.35086
[3] , and , Krein's Formula and One Dimensional Multiple Wells, J. Func. Anal., to appear. | Zbl 0562.47002
[4] and , Regularity and Asymptotic Properties of the Discrete Spectrum of Electronic Hamiltonians, Int. J. Quant. Chem., t. 14, 1978, p. 213.
[5] and , Asymptotic Behavior of Eigenfunctions for Multiparticle Schrödinger Operators, Commun. Math. Phys., t. 34, 1973, p. 251-270. | MR 391792 | Zbl 0271.35062
[6] and , Dilation Analyticity in Constant Electric Field, II. The N-Body Problem, Borel Summability, Commun. Math. Phys., t. 80, 1981, p. 181-216. | MR 623157 | Zbl 0473.47038
[7] and , Commun. Math. Phys., to appear.
[8] , Conditions for the Semiboundedness and Discreteness of the Spectrum for One-Dimensional Differential Equations, Soviet Math. Dokl., t. 2, 1961, p. 1137. | Zbl 0286.34031
[9] , Perturbation Theory for Linear Operators, Springer, 1966. | Zbl 0148.12601
[10] , and , Semiclassical Studies of Bound States and Molecular Dynamics, Springer Lecture Notes in Physics, t. 91, 1978, p. 283. | MR 550902
[11] , Classical Limit Quantum Mechanics and the Theory of Molecular Collisions, Adv. Chem. Phys., t. 25, 1974, p. 69.
[12] , Schrödinger Operators Whose Potentials Have Separated Singularities, J. Op. Th., t. 1, 1979, p. 1. | MR 526292 | Zbl 0439.35022
[13] and , On the Asymptotics of Born Oppenheimer Curves for Large Nuclear Separations, Int. J. Quant. Chem., t. 17, 1980, p. 1143-1166.
[14] and , Methods of Modern Mathematical Physics, IV. Analvsis of Operators, Academic Press, 1978. | MR 493421 | Zbl 0401.47001
[15] , Geometric Parametrices in the QM N-Body Problem, Duke Math. J., to appear. | MR 705038
[16] , Geometric Methods in the Quantum Many Body Problem, Nonexistence of Very Negative Ions, Commun. Math. Phys., t. 85, 1982, p. 309-324. | MR 676004 | Zbl 0503.47041
[17] , Coupling Constant Analyticity for the Anharmonic Oscillator (with an appendix by A. Dicke), Ann. Phys., t. 58, 1970, p. 76-136. | MR 416322
[18] , Spectrum and Continuum Eigenfunctions of Schrödinger Operators, J. Func. Anal., t. 42, 1981, p. 347-355. | MR 626449 | Zbl 0471.47028
[19] , Schrödinger Semigroups, Bull. Am. Math. Soc., t. 1, 1982, p. 447-526. | MR 670130 | Zbl 0524.35002
[20] , Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling, in prep. | Zbl 0626.35070
[21] , Supersymmetry and Morse Theory, Princeton Preprint. | MR 683171
[22] , The Twisting Trick for Double Well Hamiltonians, Commun. Math. Phys., t. 85, 1982, p. 471-479. | MR 678157 | Zbl 0524.47019
(1) Additional earlier papers on the one dimensional case include: (a) , Seminar on Spectral and Scattering Theory (ed. S. Kuroda), RIMS Publication 242, 1975, p. 22-38. (b) , The Born Oppenheimer Approximation, in The Schrödinger Equation (ed. W. Thirring and P. Urban), Springer, 1976, p. 22-38. (c) and , in Quantum Dynamics of Molecules (ed. G. Wooley), Plenum, 1980. (d) , and , in Rigorous Atomic and Molecular Physics (ed. G. Velo and A. Wightman), Plenum, 1981.
(2) A sketch of Reference 20 appears in , Instantons, Double Wells and Large Deviations, Bull. AMS, March, 1983 issue. | Zbl 0529.35059