@article{AIHPA_1983__38_1_7_0, author = {Klaus, M.}, title = {On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many ``bumps''}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {39}, year = {1983}, pages = {7-13}, mrnumber = {700696}, zbl = {0527.47032}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1983__38_1_7_0} }
Klaus, M. On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many “bumps”. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) pp. 7-13. http://gdmltest.u-ga.fr/item/AIHPA_1983__38_1_7_0/
[1] I. Op. Theory, t. 1, 1979, p. 109-115. | MR 526292 | Zbl 0439.35022
,[2] Methods of Modern Mathematical Physics, t. II, Academic Press, 1975. | Zbl 0308.47002
, ,[3] Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton Univ. Press, 1971. | MR 455975 | Zbl 0232.47053
,[4] 60, 1978, p. 13-36. | MR 484145 | Zbl 0451.47013
, Comm. Math. Phys., t.[5] Methods of Modern Mathematical Physics, t. IV, Academic Press, 1978. | Zbl 0401.47001
, ,[6] Perturbation theory for linear operators, Second Ed., Springer, 1976. | MR 407617 | Zbl 0342.47009
,[7] 45, 1978, p. 267-310. | MR 495676 | Zbl 0392.47013
, Duke Math. J., t.