@article{AIHPA_1982__36_3_225_0, author = {Klink, W. H. and Ton-That, T.}, title = {Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {37}, year = {1982}, pages = {225-237}, mrnumber = {664634}, zbl = {0488.22041}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1982__36_3_225_0} }
Klink, W. H.; Ton-That, T. Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$. Annales de l'I.H.P. Physique théorique, Tome 37 (1982) pp. 225-237. http://gdmltest.u-ga.fr/item/AIHPA_1982__36_3_225_0/
[1] Finite-dimensional irreducible representations of the unitary group and the full linear group and related special functions. Izv. Akad. Nauk. S. S. S. R. Ser. Math., t. 29, 1965, p. 1329-1356; English transl., Amer. Math. Soc. Transl., t. 64, 1967, p 116-146. | MR 201568 | Zbl 0185.21701
and ,[2] 3, 1979, p. 315. | MR 545409 | Zbl 0418.22018
, Lett. Math. Phys., t.[3] 31, 1979. p. 77-79. | Numdam | Zbl 0439.22020
and , Ann. Inst. H. Poincaré, Ser. A, t.[4] 289, 1979, p. 115-118.
and , C. R. Acad. Sci., Ser. B, t.[5] 8, 1968, p. 89; , J. Math. Phys., t. 20, 1979, p. 2391, and references cited therein. It should be noted in these references the multiplicity free Wigner coefficients are computed inductively. | MR 235799
and , Comm. Math. Phys., t.[6] 15, n° 6, 1966, p. 763-772. | MR 209397 | Zbl 0149.27403
, Scientia Sinica, t.[7] 31, 1979, p. 99-113. | Numdam | MR 561917 | Zbl 0439.22021
and , Ann. Inst. H. Poincaré, Ser. A, t.