Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation
Graffi, S. ; Harrell, E.
Annales de l'I.H.P. Physique théorique, Tome 37 (1982), p. 41-58 / Harvested from Numdam
Publié le : 1982-01-01
@article{AIHPA_1982__36_1_41_0,
     author = {Graffi, S. and Harrell, Evans},
     title = {Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {37},
     year = {1982},
     pages = {41-58},
     mrnumber = {653017},
     zbl = {0506.35079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1982__36_1_41_0}
}
Graffi, S.; Harrell, E. Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation. Annales de l'I.H.P. Physique théorique, Tome 37 (1982) pp. 41-58. http://gdmltest.u-ga.fr/item/AIHPA_1982__36_1_41_0/

[1] W. Hunziker, Schrödinger Operators with Electric or Magnetic Fields, in Mathematical Problems in theoretical Physics, K. Osterwalder, ed. Lecture Notes in Physics, t. 116, Berlin, Heidelberg, and New York, Springer, 1980. | MR 582602 | Zbl 0471.47010

[2] I. Herbst, Schrödinger Operators with External Homogeneous Electric and Magnetic Fields, Lecture at the 1980 Erice Summer School in Mathematical Physics, to be published.

[3] E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, t. I, Oxtord, at the Clarendon Press, 1946. | Zbl 0061.13505

[4] J.E. Avron and I. Herbst, Spectral and Scattering Theory of Schrödinger Operators Related to the Stark Effect, Comm. Math. Physics, t. 52, 1977, p. 239-254. | MR 468862 | Zbl 0351.47007

[5] I. Herbst, Unitary Equivalence of Stark Hamiltonians, Math. Z., t. 155, 1977, p. 55-70. | MR 449318 | Zbl 0338.47009

[6] F. Calogero and A. Degasperis, Inverse Spectral Problem for the One-Dimensional Schrödinger Equation with an Additional Linear Potential, Lett. al Nuovo Cim., t. 23, 1978, p. 143-149.Solution by the Spectral-Transform Method of a Nonlinear Evolution Equation Including as a Special Case the Cylindrical KdV, ibid., p. 150-154.Conservation Laws for a Nonlinear Evolution Equation that Includes as a Special Case the Cylindrical KdV Equation, ibid., p. 155-160. | MR 514528

[7] E. Hille, Ordinary Differential Equations in the Complex Domain, New York, Wiley, 1976. | MR 499382 | Zbl 0343.34007

[8] F.W.J. Olver, Asymptotics and Special Functions, New York, Academic Press, 1974. | MR 435697 | Zbl 0303.41035

[9] P.P. Kulish, Obratnaya Zadacha Rasseyaniya dlya Uravneniya Shredingera na Osi, Mat. Zametki, t. 4, 1968, p. 677-684.

[10] L.D. Faddeyev, The Inverse Problem in the Quantum Theory of Scattering, J. Math. Physics, t. 4, 1963, p. 72-104. | MR 149843 | Zbl 0112.45101

[11] M. Abramowitz and I.A. Stegun, eds. Handbook of Mathematical Functions, Applied Mathematics Series, t. 55, Washington, National Bureau of Standards, 1964.

[12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, t. 2, Fourier Analysis, Self-Adjointness, New York, Academic Press, 1975. | Zbl 0308.47002

[13] D.V. Widder, The Airy Transform, Amer. Math. Monthly, t. 86, 1979, p. 271-277. | MR 525757 | Zbl 0417.44001

[14] R.K. Bullough and P.J. Caudrey, eds. Solitons, Topics in Current Physics, t. 17, Berlin, Heidelberg and New York, Springer, 1980. | MR 625877 | Zbl 0428.00010