@article{AIHPA_1981__34_2_231_0, author = {Bel, Louis and Martin, J.}, title = {Predictive relativistic mechanics of systems of N particles with spin. II. The electromagnetic interaction}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {35}, year = {1981}, pages = {231-252}, mrnumber = {610866}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1981__34_2_231_0} }
Bel, L.; Martin, J. Predictive relativistic mechanics of systems of N particles with spin. II. The electromagnetic interaction. Annales de l'I.H.P. Physique théorique, Tome 35 (1981) pp. 231-252. http://gdmltest.u-ga.fr/item/AIHPA_1981__34_2_231_0/
[1] 23, 1980, p. 409.
and , Ann. Institut H. Poincaré, t.[2] 2, 1959, p. 435.
, and , Phys. Rev. Lett., t.[3] See for example: 7, 1973, p. 1099; and , Phys. Rev., t. D 8, 1973, p. 4347; , in Journées Relativistes de Toulouse, Université de Toulouse, Département de Mathé- matiques, 1974 ; et , Ann. Inst. H. Poincaré, t. 25, 1976, p. 411.
, and , Phys. Rev., t. D[4] 34, 1929, p. 553; Phys. Rev., t. 36, 1930, p. 383. A deduction of this Hamiltonian by Quantum Electrodynamic procedures may be found, in : LANDAU et LIFCHITZ, Théorie Quantique Relativiste (première partie), éditions Mir, Moscou, 1972. | JFM 55.0527.03
, Phys. Rev., t.[5] A different classical derivation of the equations of motion and lagrangians relative to this Hamiltonian may be found, in : , Tesis doctoral, Universitat de Barcelona, 1978; and , preprint, Universitat Autonoma de Barcelona, Spain, 1979.
[6] It is assumed that the curve is time-like and future oriented. We take signature + 2 for M4. Einstein's summation convention will be utilized for all kinds of indices; these will always be placed in the appropriate position (« covariant » or « contravariant ») to respect the said convention.
[7] This condition eliminates the presence of an electric dipolar moment.
[8] We use the convention η0123 = + 1, and consequently η0123 = - 1.
[9] We here consider the advanced propagator as an open possibility.
[10] See for example: 17, 1976, p. 1496.
and , J. Math. Phys., t.[11] Actually BARGMANN, MICHEL and TELEGDI only use these equations for the case of a homogeneous electromagnetic field. It should also be pointed out that similar Eqs. appear in the following: 3, 1927, p. 1; , Z. Physik, t. 37, 1926, p. 243; , Quantum Mechanics, North Holland Publishing Co., Amsterdam, 1957. In Kramer's equations there appear, nevertheless, certain inconsistencies, as is pointed out in Bargmann, Michel and Teledgi.
, Phil. Mag., t.[12] See for example: L. BEL and X. FUSTERO (ref. 3).
[13] See for example: Géométrie Différentielle et Systèmes Extérieurs, éd. Dunod, Paris, 1968. | MR 236824 | Zbl 0164.22001
,[14] In particular formulae (4.14 b) and (4.34) of BM.
[15] For the case of spinless particles consult ref. 12.
[16] For more details on Exterior Calculus techniques consult ref. 13.
[17] This part is already obtained from Darwin's well-known Lagrangian: , Phil. Mag., t. 39, 1920, p. 537.
[18] This term, which contains a Dirac « delta », is purely quantum mechanical. Consult the refs. at 4.
[19] Contribution to Differential Geometry and Relativity, Cahen and Flato (eds.), D. Reidel Publishing Co., Dordrecht, Holland, 1976. | MR 430976
,