The geometrical and gauge structure of a generalized theory of gravitation
Moffat, J. W.
Annales de l'I.H.P. Physique théorique, Tome 35 (1981), p. 85-94 / Harvested from Numdam
Publié le : 1981-01-01
@article{AIHPA_1981__34_1_85_0,
     author = {Moffat, J. W.},
     title = {The geometrical and gauge structure of a generalized theory of gravitation},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {35},
     year = {1981},
     pages = {85-94},
     mrnumber = {605358},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1981__34_1_85_0}
}
Moffat, J. W. The geometrical and gauge structure of a generalized theory of gravitation. Annales de l'I.H.P. Physique théorique, Tome 35 (1981) pp. 85-94. http://gdmltest.u-ga.fr/item/AIHPA_1981__34_1_85_0/

[1] J.W. Moffat, Phys. Rev., t. D19, 1979, p. 3554. | MR 538568

[2] J.W. Moffat, Ibid., t. D19, 1979, p. 3562. | MR 538570

[3] J.W. Moffat, J. Math. Phys., t. 21, 1980, p. 1798. | Zbl 0451.35091

[4] R.B. Mann and J.W. Moffat, University of Toronto, preprint, 1980.

[5] G. Kunstatter, J.W. Moffat and P. Savaria, Can. J. Phys., t. 58, 1980, p. 729. | MR 586630 | Zbl 1043.83554

[6] Cf. Y.M. Cho, Phys. Rev., t. D14, 1976, p. 2421.

[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience Pub. John Wiley, New York, t. II, 1969). | MR 238225 | Zbl 0175.48504

[8] Here the superspace is defined for eight bose coordinates and not for four bose and four fermi coordinates as is done in superspace versions of supersymmetry theories (cf. P. Nath and R. Arnowitt, Phys. Lett., t. 56B, 1975, p. 177). The present work can readily be extended to the case of superspace supersymmetry by defining the N manifold in terms of four fermi coordinates with the basis vectors ξm satisfying { ξm, ξn } = { ∂m, ∂n } = 0 (see: J.W. Moffat, to be published in Lett. in Math. Physics).

[9] Cf. Supergravity, eds. D. Z. FREEDMAN and P. VAN NIEUWENHUIZEN, North Holland, Pub. 1979. | MR 592447

[10] Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math.-Phys., K1, 1921, p. 966. | JFM 48.1327.01