@article{AIHPA_1981__34_1_45_0, author = {Benenti, Sergio and Francaviglia, Mauro}, title = {Canonical forms for separability structures with less than five Killing tensors}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {35}, year = {1981}, pages = {45-64}, mrnumber = {605356}, zbl = {0454.53030}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1981__34_1_45_0} }
Benenti, Sergio; Francaviglia, Mauro. Canonical forms for separability structures with less than five Killing tensors. Annales de l'I.H.P. Physique théorique, Tome 35 (1981) pp. 45-64. http://gdmltest.u-ga.fr/item/AIHPA_1981__34_1_45_0/
[1] 34, 1975-1976, p. 431-463. | MR 474131 | Zbl 0346.53008
, Rend. Sem. Mat. Univ. Pol. Torino, t.[2] 283 A, 1976, p. 215-218 ; Rep. Math. Phys., t. 12, 1977, p. 311-316. | MR 433506 | Zbl 0349.53014
, C. R. A. S., Paris, t.[3] 289 A, 1979, p. 795-798. | MR 558800 | Zbl 0431.53020
, C. R. A. S., Paris, t.[4] Separability structures in Riemannian manifolds, in: Proceed. Conf. Diff. Geom. Methods in Math. Phys., Salamanca, 1979, P. Garcia and A. Perez-Randon Eds. (Lect. Notes in Math; Springer, forthcoming).
,[5] 30, 1979, p. 143-157. | Numdam | MR 535370 | Zbl 0459.53019
, , Ann. Inst. H. Poincaré, t.[6] Killing tensors and nonorthogonal variable separation for Hamilton-Jacobi equations, preprint, 1980.
, ,[7] 59, 1904, p. 383-397. | JFM 35.0362.02 | MR 1511275
, Math. Ann., t.[8] 10, 1979, p. 79-92. | Zbl 0438.53023
, , GRG Journal, t.[9] 10, 1968, p. 280-310. | MR 239841 | Zbl 0162.59302
, Comm. Math. Phys., t.[10] 59, 1978, p. 285- 302. | MR 488109 | Zbl 0377.53009
, , , Comm. Math. Phys., t.[11] The theory of separability of the Hamilton-Jacobi equation and its applications to General Relativity, Ch. 13, in: General Relativity and Gravitation, vol. I, A. Held Ed. (Plenum Press, New York, 1980). | MR 583725
, ,[12] Separability of Einstein space-times: the state of the art, in: Procceeding 2nd Marcell Grossmann Meeting, Trieste 1979, R. Ruffini Ed. (forthcoming). | MR 678953
,[13] On the canonical forms of all separable metrics (in preparation).
,[14] Separation of variables in Einstein spaces II. No ignorable coordinates, preprint n. 217, Inst. de Invest. en Mat. Aplicadas y en Sistemas, Univ. of Mexico City, 1979 ; forthcoming in GRG Journal. | MR 601482 | Zbl 0467.53018
,