@article{AIHPA_1980__32_4_377_0, author = {Droz-Vincent, Philippe}, title = {N-body relativistic systems}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {33}, year = {1980}, pages = {377-389}, mrnumber = {594636}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1980__32_4_377_0} }
Droz-Vincent, Ph. N-body relativistic systems. Annales de l'I.H.P. Physique théorique, Tome 33 (1980) pp. 377-389. http://gdmltest.u-ga.fr/item/AIHPA_1980__32_4_377_0/
[1] An exhaustive list of references is by now impossible. See for instance
8, 1967, p. 201.
, J. Math. Phys., t.1, n° 8, 1970, p. 2212.
, Phys. Rev., t. D12, 1970, p. 307. | Numdam | MR 266567
, Ann. Inst. Henri Poincaré, t.47, 1972, p. 255. | MR 347305 | Zbl 0244.70006
, Arch. for Rat. Mech. and Analysis, t.4, 1971, p. 1689.
, Phys. Rev., t. D3, 1971, p. 2351.
, Phys. Rev., t. D133, 1978, p. 115.
and , Nucl. Phys., t. B54, n° 2, 1975, p. 563.
, Prog. Theor. Phys., t.48 A, 1978, p. 257; Nuovo Cimento, t. 48 B, 1978, p. 152.
, , , Nuovo Cimento, t.And also references [2-4] and [8].
Quoted below.
[2] 1, 1969, p. 839; Physica Scripta, t. 2, 1970, p. 129. | Zbl 1063.83553
, Lett. Nuovo Cim., t.[3] 8, n° 1, 1975, p. 79. | MR 418156
, Reports on Math. Phys., t.[4] 27, 1977, p. 407. | Numdam | MR 496313
, Ann. Inst. Henri Poincaré, t.[5] 68 B, 1977, p. 239.
and , Phys. Letters, t.57, 1977, p. 331; t. 58, 1977, p. 1229; D. P. N. U. Report 15-78, 1978.
, Progr. Theor. Phys., t.18, n° 8, 1978.
, Phys. Rev., t. D[6] 24, 1976, p. 411. See also
and , Ann. Inst. Henri Poincaré, t.18, n° 12, 1979, p. 4770. In their case, classical field theory automatically provides N-body difference-differential equations, as usual. Then they reduce these equations to a predictive differential system by a series expansion method. In our case one wishes to ignore field theory from the outset.
, Phys. Rev., t. D[7] The spirit of our formulation is similar to that of But of course we take into account the facts implied by Currie's No-Go Theorem.
, Commun. Dublin Inst. Adv. Studies, A, n° 2, 1943.[8] 4, 1963, p. 1470; Phys. Rev., t. 142, 1966, p. 817. | MR 158737 | Zbl 0125.19505
, J. Math. Phys., t.35, 1963, p. 350. | MR 151138
, and , Rev. Mod. Phys., t.Nuovo Cim., t. 37, 1965, p. 556.
,[9] 182, 1979.
, C. R. Acad. Sc. Paris, t. A[10] Trivial for a single particle. For N = 2 see ref. [4] and DROZ-VINCENT, in Volume in the honor of A. Lichnerowicz, Cahen and Flato, Ed. D. Reidel, Dordrecht. The argument holds for any N. It is based upon the « individuality » property expressed in eq. (1.4).
[11] 23, n° 5, 1978, p. 184. | MR 522824
, Lett. Nuovo Cim., t.[12] 19, n° 2, 1979, p. 702. | MR 518731
, Phys. Rev., t. D[13] Note that the sign of the potential depends on the space time signature.
[14] For N = 2, see for example:
3, 1971, p. 2706.
, and , Plays. Rev., t. D15, 1977, p. 335.
and , Phys. Rev., t. D12, 1975, p. 3583.
and , Phys. Rev., t. D16, 1977, p. 1580. For N = 3, see ref. [5].
, Phys. Rev., t. D[15] Note that abandoning the single-potential assumption will only introduce interaction terms in the « subsidiary » equations (4.6).