@article{AIHPA_1980__32_3_283_0, author = {Comtet, A.}, title = {Magnetic monopoles in curved spacetimes}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {33}, year = {1980}, pages = {283-293}, mrnumber = {579965}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1980__32_3_283_0} }
Comtet, A. Magnetic monopoles in curved spacetimes. Annales de l'I.H.P. Physique théorique, Tome 33 (1980) pp. 283-293. http://gdmltest.u-ga.fr/item/AIHPA_1980__32_3_283_0/
[1] 79, 1974, p. 276. , J. E. T. P. Letters, t. 20, 1974, p. 194. and , Phys. Rev., t. D 11, 1975, p. 2227. and , Phys. Lett., t. 79 B, 1978, p. 297.
, Nucl. Phys., t. Band , C. E. R. N., TH 2445, 1978.
[2] 24, 1976, p. 861. | MR 443719
, Sov. J. Nucl. Phys., t.15, 1977, p. 544.
, , and , Phys. Rev., t. D[3] 2, n° 1, 1977. | MR 1553697
, Lett. Math. Phys., Vol.[4]
, Harvard University Preprint, 1977.[5] Gauge field configurations in curved spacetimes. I) Phys. Rev., t. D 20, 1979, p. 1884. II) Phys. Rev., t. D 20, 1979, p. 1898. III) Self-dual SU (2) fields in Eguchi-Hanson space. Phys. Rev., t. D 21, 1980, p. 979. IV) Self-dual SU (2) fields in multicentre space. Phys. Rev., t. D 21, 1980, p. 2280. V) Regularity constraints and quantized actions preprint Ecole Polytechnique. Phys. Rev., t. D 21, 1980, p. 2285. | MR 564218 | MR 548063
, and ,[6] 11, 1975, p. 2692. | MR 468915
and , Phys. Rev., t. D12, 1975, p. 1588. | MR 503451
and , Phys. Rev., t. D13, 1976, p. 778.
, and , Phys. Rev., t. DSur le tenseur d'énergie et le champ gravitationnel du monopole magnétique. Comptes Rendus de l'Académie des Sciences, t. 290, Série A, 1980. p. 85. | Zbl 0435.35076
and ,[7] 35, 1975, p. 760.
and , Phys. Rev. Lett., t.[8] 16, 1977, p. 1221. , , Ann. Phys., t. 100, 1976, p. 607.
and , Phys. Rev., t. D[9] One can easily check that these equations are no longer of the Bogomolny type, as they were in the previous case.
[10] Obviously conformal invariance of the metric does not guarantee that there is a corresponding solution in flat space (actually our lagrangian density is not conformal invariant, an appropriate conformal invariant lagrangian would be obtained by adding a term of the form R/6 Φ2).
[11] 59, 1978, p. 1781.
, Lectures notes from Jacca Summer School, 1978. , Prog. Th. Phys., Vol.Rediconti Circolo-Mat., Palermo, t. 21, 1906, p. 129. | JFM 37.0886.01
,[12] Physics Reports, Vol. 51, n° 3, 1979. | MR 528067
and ,