@article{AIHPA_1979__31_2_115_0,
author = {Sanz, J. L.},
title = {Two charges in an external electromagnetic field : a generalized covariant hamiltonian formulation},
journal = {Annales de l'I.H.P. Physique th\'eorique},
volume = {31},
year = {1979},
pages = {115-139},
mrnumber = {561918},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPA_1979__31_2_115_0}
}
Sanz, J. L. Two charges in an external electromagnetic field : a generalized covariant hamiltonian formulation. Annales de l'I.H.P. Physique théorique, Tome 31 (1979) pp. 115-139. http://gdmltest.u-ga.fr/item/AIHPA_1979__31_2_115_0/
[1] and , Ann. Inst. H. Poincaré, 24 A, 1976, p. 347. | Numdam
[2] The proof of this theorem made by (Il Nuovo Cimento, 12 B, 1972, p. 1) is incorrect, but the theorem can be proven to be correct (see Section II).
[4] , Phys. Rev., t. 142, 1966, p. 817. | MR 198924
[5] , J. Math. Phys., t. 8, 1967, p. 201.
[6] , Ann. Inst. H. Poincaré, t. 12, 1970, p. 307. | Numdam | MR 266567
[7] , and , Phys. Rev., 7 D, 1973, p. 1099.
[8] and , Il Nuovo Cimento, 20 B, 1974, p. 209.
[9] and , Phys. Rev., 8 D, 1973, p. 4347.
[10] and , Phys. Rev., 13 D, 1976, p. 2805.
[11] and , Phys. Rev., 9 D, 1974, p. 2760.
[12] and , Ann. Inst. H. Poincaré, 25, 1976, p. 411. | Numdam | Zbl 0347.35070
[13] , Lett. Il Nuovo Cimento, t. 1, 1969, p. 839.
[14] , Phys. Rev., 1 D, 1969, p. 2212.
[15] , Ann. Inst. H. Poincaré, t. 14, 1971, p. 189. | Numdam | MR 286379
[16] , Doctoral course, Departamento de Fisica Teórica, Universidad de Barcelona, 1976.
[19] , Foundations of Mechanics, W. A. Benjamin, 1967. | Zbl 0158.42901
[20] , Géométrie diferentielle et Mécanique Analitique, Hermann, 1969. | MR 242081 | Zbl 0174.24602
[21] , Doctoral Course, Universidad Autónoma de Madrid, 1972, unpublished.
[22] and , to appear in J. Math. Phys., Section 2.
[23] Let us consider a symplectic form on (TM4)N with local expression Ω = 1/2ΩABdyA dyB (A, B = 0, ... 8N - 1; yα = xα1, ..., y4(N - 1) + α = xαN, y4N+α = πα1, ..., y4(2N-1)+α = παN) where ΩAB are skewsymmetric functions on (TM4)N. The Poisson bracket of two functions f and g on (TM4)N is defined by [f, g] = - Ω-1AB∂f ∂yA∂g∂yB where Ω-1AB is the inverse matrix of ΩAB (i. e., Ω-1ABΩBC = δAC). As is well-known in the literature (see, for example, , Ann. Inst. H. Poincaré, t. 18 A, 1973, p. 57 ; , Symposia Mathematica, t. 14, 1974, p. 53 ; J. Math. Phys., t. 15, 1974, p. 1033) condition (22) can be equivalently written in the form [xαa, xβb] = 0 ([, ] being the Poisson bracket relative to Ω), which is the classical form of expressing the canonical character of the position variables xαa.
[24] , to be published in J. Math. Phys.
[25] , and , Rev. Mod. Phys., t. 35, 1963, p. 350. | MR 151138
[26] , J. Math. Phys., t. 8, 1967, p. 1756.
[27] and , J. Math. Phys., t. 19, 1978, p. 780.
[28] , J. Math. Phys., t. 15, 1974, p. 1689.
[29] , J. Math. Phys., t. 16, 1975, p. 1844.
[30] and , Ann. Inst. H. Poincaré, 22 A, 1957, p. 173. | Numdam | MR 378697
[32] , Géométrie différentielle et systèmes extérieures, Dunod, 1968. | MR 236824 | Zbl 0164.22001
[33] , Tesis Doctoral, Universidad Autónoma de Madrid, 1976.