@article{AIHPA_1976__25_2_177_0, author = {Tahir Shah, K.}, title = {On the principle of stability of invariance of physical systems}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {25}, year = {1976}, pages = {177-182}, mrnumber = {424095}, zbl = {0388.58022}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1976__25_2_177_0} }
Tahir Shah, K. On the principle of stability of invariance of physical systems. Annales de l'I.H.P. Physique théorique, Tome 25 (1976) pp. 177-182. http://gdmltest.u-ga.fr/item/AIHPA_1976__25_2_177_0/
[1]
, Les Méthodes Nouvelles de la Mécanique Céleste, Paris, 1899.[2]
and , Foundation of Mechanics, Benjamin, New York, 1967.[3] We do not list papers because of extreamly large numbers of papers in this field.
[4] | MR 488155 | Zbl 0294.92001
, Stabilité Structurelle et Morphogenèse, Benjamin, 1972 and reference there in.[5] 49, 1967, p. 306; Jour. of Math. Phys., t. 9, 1968, p. 1638 and t. 11, 1970, p. 1463. | Zbl 0144.46201
, Nouvo Cim., A[6]
, Topics in bifurcation theory, Seminar report, Clausthal, 1973.[7] 6, 1974, p. 171. | MR 385018 | Zbl 0314.17011
, Reports on Math. Phys., t.[8] Symmetries gained and lost, Proceedings of III GIFT Seminars in Theor. Phys., Madrid, 1972 ; see also , Geometrical aspects of symmetry breaking, same proceedings.
,[9] 3, 1969, p. 289. | Zbl 0215.38603
, Jour. of Diff. Geom., t.[10] | MR 244439
, Proceedings of Symp. on Transformation Groups, Edited by , p. 429, Springer-Verlag, 1967.[11] 1, 1962, p. 101, Ann. of Math., t. 87, 1968, p. 422) has shown that if the dimension of the manifold is two, then the set of structurally stable vector field or dynamical system is a dense set on the set of all vector fields on this two dimensional manifold. In the case of differentiable maps i. e. C∞-maps, one can define stability as follows. Let Mn and Np be the two C∞-manifolds and let Cr (,) be the space of all maps from Mn to Np provided with the Cr-topology. A map is called stable if all'nearby maps' k are of the same type topologically as f and the diagram is commutative, i. e. fh = h'k where h and h' are ∈-homeomorphisms of Mn and Np. For a general reference, see M. Golubitsky and Guillemin, Stable mappings and their Singularities, Springer-Verlag, 1973. | MR 142859
, (Topology, t.[12] 39, 1953, p. 510. | MR 55352 | Zbl 0050.02601
and , Proc. Natl. Acad. Sci (USA), t.