@article{AIHPA_1974__21_1_1_0, author = {Glimm, James and Jaffe, Arthur}, title = {The entropy principle for vertex functions in quantum field models}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {21}, year = {1974}, pages = {1-25}, mrnumber = {391796}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1974__21_1_1_0} }
Glimm, James; Jaffe, Arthur. The entropy principle for vertex functions in quantum field models. Annales de l'I.H.P. Physique théorique, Tome 21 (1974) pp. 1-25. http://gdmltest.u-ga.fr/item/AIHPA_1974__21_1_1_0/
[1] Asymptotic perturbation expansion in the P(Φ)2 quantum field theory. Commun. Math. Phys., t. 35, 1974, p. 347-356. | MR 334756
,[2] Stationary entropy principle and renormalization in normal and superfluid systems I, II. Jour. Math. Phys., t. 5, 1964, p. 14-30, p. 31-59.
and ,[3] The Wightman axioms and particle structure in the P(Φ)2 quantum field model. Ann. Math., to appear.
, and ,[4] The particle structure of the weakly coupled P(Φ)2 models and other applications of high temperature expansions. Part II. The cluster expansion. In: Constructive quantum field theory, Ed. by G. Velo and A. Wightman, Lecture notes in physics, Vol. 25, Springer Verlag, Berlin, 1973. | MR 395513
, and ,[5] The λΦ43 field theory in a finite volume.
,[6] Schwinger functions and their generating functionals. I. Helv. Phys. Acta. | MR 436830 | Zbl 0345.46057
,[7] Relativistic field theories with symmetry breaking solutions. Nuovo Cimento (L), t. 34, 1964, p. 1790-1795.
,[8] Sous-différentiabilité. In : Colloquium on convexity, ed. by Fenchel. Kobenhavns Universitet Matematisk Institut, Copenhagen, 1967. | MR 217598 | Zbl 0185.39401
,[9] On the many-particle structure of Green's functions in quantum field theory. J. Math. Phys., t. 1, 1960, p. 249-273. | MR 145878
,[10] Renormalizable models with simple symmetry breaking. I. Symmetry breaking by a source term. Commun. Math. Phys., t. 16, 1970, p. 48-80. | MR 266541
,[11] Legendre transforms of the generating functionals in quantum field theory. Teoret. i Mat. Fizika, t. 12, 1972, p. 352-369.
and ,