@article{AIHPA_1974__20_3_269_0, author = {Droz-Vincent, Philippe}, title = {Local existence for finitely predictive two-body interactions}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {21}, year = {1974}, pages = {269-277}, mrnumber = {386575}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1974__20_3_269_0} }
Droz-Vincent, Ph. Local existence for finitely predictive two-body interactions. Annales de l'I.H.P. Physique théorique, Tome 21 (1974) pp. 269-277. http://gdmltest.u-ga.fr/item/AIHPA_1974__20_3_269_0/
[1] 4, 1963, p. 1470; Phys. Rev., t. 142, 1966, p. 817. | MR 158737 | Zbl 0125.19505
, J. Math. Phys., t.[2] 8, 1967, p. 201.
, J. Math. Phys., t.[3] 6, 1965, p. 1218. | MR 1434231
, J. Math. Phys., t.[4] I, vol. I, 1969, p. 839 ; Physica Scripta, Vol. 2, 1970, p. 129. | Zbl 1063.83553
, Lett. Nuovo Cimento, t.[5] A compact sketch of this problem was outlined in 275 A, 1972, p. 1263.
, C. R. Acad. Sc. Paris, t.[6] To be sure that the « width » of the neighborhood is always > some positive ∈, one must replace Σ- (resp. Σ-*) by a compact part of it.
[7] 178, 1969, p. 2051. | MR 240421
, Phys. Rev., t.[8] 131, 1963, p. 2762. | Zbl 0122.44903
, Phys. Rev., t.[9] 7, 1973, p. 1099 (see also , , to be published).
, , , Phys. Rev., D[10] 11, n° 9, 1970, p. 2704.
, , J. Math. Phys., t.[11] XIV, n° 1, 1971, p. 69. | Numdam
, Ann. Inst. Henri Poincaré, Vol.