@article{AIHPA_1974__20_3_269_0,
author = {Droz-Vincent, Philippe},
title = {Local existence for finitely predictive two-body interactions},
journal = {Annales de l'I.H.P. Physique th\'eorique},
volume = {21},
year = {1974},
pages = {269-277},
mrnumber = {386575},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPA_1974__20_3_269_0}
}
Droz-Vincent, Ph. Local existence for finitely predictive two-body interactions. Annales de l'I.H.P. Physique théorique, Tome 21 (1974) pp. 269-277. http://gdmltest.u-ga.fr/item/AIHPA_1974__20_3_269_0/
[1] , J. Math. Phys., t. 4, 1963, p. 1470; Phys. Rev., t. 142, 1966, p. 817. | MR 158737 | Zbl 0125.19505
[2] , J. Math. Phys., t. 8, 1967, p. 201.
[3] , J. Math. Phys., t. 6, 1965, p. 1218. | MR 1434231
[4] , Lett. Nuovo Cimento, t. I, vol. I, 1969, p. 839 ; Physica Scripta, Vol. 2, 1970, p. 129. | Zbl 1063.83553
[5] A compact sketch of this problem was outlined in , C. R. Acad. Sc. Paris, t. 275 A, 1972, p. 1263.
[6] To be sure that the « width » of the neighborhood is always > some positive ∈, one must replace Σ- (resp. Σ-*) by a compact part of it.
[7] , Phys. Rev., t. 178, 1969, p. 2051. | MR 240421
[8] , Phys. Rev., t. 131, 1963, p. 2762. | Zbl 0122.44903
[9] , , , Phys. Rev., D 7, 1973, p. 1099 (see also , , to be published).
[10] , , J. Math. Phys., t. 11, n° 9, 1970, p. 2704.
[11] , Ann. Inst. Henri Poincaré, Vol. XIV, n° 1, 1971, p. 69. | Numdam