@article{AIHPA_1967__7_4_353_0,
author = {Flamand, G.},
title = {On the Regge symmetries of the $3j$ symbols of $SU \, (2)$},
journal = {Annales de l'I.H.P. Physique th\'eorique},
volume = {7},
year = {1967},
pages = {353-366},
mrnumber = {223139},
zbl = {0241.20035},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPA_1967__7_4_353_0}
}
Flamand, G. On the Regge symmetries of the $3j$ symbols of $SU \, (2)$. Annales de l'I.H.P. Physique théorique, Tome 7 (1967) pp. 353-366. http://gdmltest.u-ga.fr/item/AIHPA_1967__7_4_353_0/
[1] , Nuovo Cim., t. 10, 1958, p. 296.
[2] , unpublished, 1952. U. S. Atom. Energy Comm. NYO-3071 (Reprinted in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H.Van Dam. Academic Press, 1965).
, Rev. Mod. Phys., t. 34, 1962, p. 829. Some acquaintance with these beautiful papers is expected from the reader. | MR 143478 | Zbl 0119.43705
[4] , J. Math. Phys., t. 7, 1966, p. 612. It is proved in this paper that the 3j symbols of any compact group do have the class I symmetries except when the three representations are equivalent. In that case a general criterion for their existence and a counter example are given. | MR 189620 | Zbl 0163.22703
[5] Another instance of this property can be found in A. J. DRAGT, J. Math. Phys., t. 6, 1965, p. 533, section 6 B, in a somewhat different context though.
[7] , Orsay preprint, TH/138.
[8] The Lie algebra SO*(2n) , is described in, Differential Geometry and Symmetric Spaces, Academic Press, 1962, p. 341.