@article{AIHPA_1967__7_4_353_0, author = {Flamand, G.}, title = {On the Regge symmetries of the $3j$ symbols of $SU \, (2)$}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {7}, year = {1967}, pages = {353-366}, mrnumber = {223139}, zbl = {0241.20035}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1967__7_4_353_0} }
Flamand, G. On the Regge symmetries of the $3j$ symbols of $SU \, (2)$. Annales de l'I.H.P. Physique théorique, Tome 7 (1967) pp. 353-366. http://gdmltest.u-ga.fr/item/AIHPA_1967__7_4_353_0/
[1] 10, 1958, p. 296.
, Nuovo Cim., t.[2] U. S. Atom. Energy Comm. NYO-3071 (Reprinted in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H.Van Dam. Academic Press, 1965).
, unpublished, 1952.34, 1962, p. 829. Some acquaintance with these beautiful papers is expected from the reader. | MR 143478 | Zbl 0119.43705
, Rev. Mod. Phys., t.[4] 7, 1966, p. 612. It is proved in this paper that the 3j symbols of any compact group do have the class I symmetries except when the three representations are equivalent. In that case a general criterion for their existence and a counter example are given. | MR 189620 | Zbl 0163.22703
, J. Math. Phys., t.[5] Another instance of this property can be found in A. J. DRAGT, J. Math. Phys., t. 6, 1965, p. 533, section 6 B, in a somewhat different context though.
[7]
, Orsay preprint, TH/138.[8] The Lie algebra SO*(2n) , is described in , Differential Geometry and Symmetric Spaces, Academic Press, 1962, p. 341.