Nous introduisons une opération qui mesure l’auto-intersection des chemins sur une surface orientée. Comme applications, nous donnons un critère de la réalisabilité d’un twist de Dehn généralisé, et nous obtenons une contrainte géométrique sur l’image des homomorphismes de Johnson.
We introduce an operation which measures the self intersections of paths on an oriented surface. As applications, we give a criterion of the realizability of a generalized Dehn twist, and derive a geometric constraint on the image of the Johnson homomorphisms.
@article{AIF_2015__65_6_2711_0, author = {Kawazumi, Nariya and Kuno, Yusuke}, title = {Intersection of curves on surfaces and their applications to mapping class groups}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2711-2762}, doi = {10.5802/aif.3001}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2711_0} }
Kawazumi, Nariya; Kuno, Yusuke. Intersection of curves on surfaces and their applications to mapping class groups. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2711-2762. doi : 10.5802/aif.3001. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2711_0/
[1] A generalization of the Turaev cobracket and the minimal self-intersection number of a curve on a surface, New York J. Math., Tome 19 (2013), pp. 253-283 http://nyjm.albany.edu:8000/j/2013/19_253.html | MR 3084705
[2] Intersections of loops and the Andersen-Mattes-Reshetikhin algebra, J. Lond. Math. Soc. (2), Tome 87 (2013) no. 3, pp. 785-801 | Article | MR 3073676 | Zbl 1303.57019
[3] Combinatorial Lie bialgebras of curves on surfaces, Topology, Tome 43 (2004) no. 3, pp. 543-568 | Article | MR 2041630 | Zbl 1050.57014
[4] Minimal intersection of curves on surfaces, Geom. Dedicata, Tome 144 (2010), pp. 25-60 | Article | MR 2580416 | Zbl 1186.57015
[5] Algebraic characterization of simple closed curves via Turaev’s cobracket (http://arxiv.org/abs/1009.2620)
[6] An algebraic characterization of simple closed curves on surfaces with boundary, J. Topol. Anal., Tome 2 (2010) no. 3, pp. 395-417 | Article | MR 2718130 | Zbl 1245.57021
[7] Graded Poisson algebras on bordism groups of garlands and their applications (http://arxiv.org/abs/math/0608153)
[8] Orbits of curves under the Johnson kernel, Amer. J. Math., Tome 136 (2014) no. 4, pp. 943-994 | Article | MR 3245184
[9]
(private communication)[10] New series in the Johnson cokernels of the mapping class groups of surfaces, Algebr. Geom. Topol., Tome 14 (2014) no. 2, pp. 627-669 | Article | MR 3159965
[11] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Tome 85 (1986) no. 2, pp. 263-302 | Article | MR 846929 | Zbl 0619.58021
[12] Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc., Tome 10 (1997) no. 3, pp. 597-651 | Article | MR 1431828 | Zbl 0915.57001
[13] A survey of the Torelli group, Low-dimensional topology (San Francisco, Calif., 1981), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 20 (1983), pp. 165-179 | Article | MR 718141
[14] Cohomological aspects of Magnus expansions (http://arxiv.org/abs/math/0505497)
[15] Groupoid-theoretical methods in the mapping class groups of surfaces (http://arxiv.org/abs/1109.6479)
[16] The logarithms of Dehn twists, Quantum Topol., Tome 5 (2014) no. 3, pp. 347-423 | Article | MR 3283405
[17] Formal (non)commutative symplectic geometry, The Gel fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA (1993), pp. 173-187 | MR 1247289 | Zbl 0821.58018
[18] A combinatorial construction of symplectic expansions, Proc. Amer. Math. Soc., Tome 140 (2012) no. 3, pp. 1075-1083 | Article | MR 2869092 | Zbl 1241.57025
[19] The generalized Dehn twist along a figure eight, J. Topol. Anal., Tome 5 (2013) no. 3, pp. 271-295 | Article | MR 3096306 | Zbl 1282.57025
[20] Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France, Tome 140 (2012) no. 1, pp. 101-161 | Numdam | MR 2903772 | Zbl 1248.57009
[21]
(in preparation)[22] Fox pairings and generalized Dehn twists, Ann. Inst. Fourier (Grenoble), Tome 63 (2013) no. 6, pp. 2403-2456 http://aif.cedram.org/item?id=AIF_2013__63_6_2403_0 | Numdam | MR 3237452 | Zbl 1297.57005
[23] Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not. IMRN (2014) no. 1, pp. 1-64 | MR 3158528 | Zbl 1298.53085
[24] On the structure and the homology of the Torelli group, Proc. Japan Acad. Ser. A Math. Sci., Tome 65 (1989) no. 5, pp. 147-150 http://projecteuclid.org/euclid.pja/1195512903 | MR 1011856 | Zbl 0684.57006
[25] Mapping class groups of surfaces and three-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo (1991), pp. 665-674 | MR 1159253 | Zbl 0743.57007
[26] Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J., Tome 70 (1993) no. 3, pp. 699-726 | Article | MR 1224104 | Zbl 0801.57011
[27] Cohomological structure of the mapping class group and beyond, Problems on mapping class groups and related topics, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 74 (2006), pp. 329-354 | Article | MR 2264550 | Zbl 1304.57030
[28] Planar regular coverings of orientable closed surfaces, Knots, groups, and -manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, Princeton, N.J. (1975), p. 261-292. Ann. of Math. Studies, No. 84 | MR 388396 | Zbl 0325.55002
[29] The Johnson homomorphism and its kernel (http://arxiv.org/abs/0904.0467, to appear in J. Reine Angew. Math.)
[30] Cutting and pasting in the Torelli group, Geom. Topol., Tome 11 (2007), pp. 829-865 | Article | MR 2302503 | Zbl 1157.57010
[31] A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not. (2005) no. 12, pp. 725-760 | Article | MR 2146606 | Zbl 1079.16028
[32] Intersections of loops in two-dimensional manifolds, Mat. Sb., Tome 106(148) (1978) no. 4, pp. 566-588 | MR 507817 | Zbl 0384.57004
[33] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4), Tome 24 (1991) no. 6, pp. 635-704 | Numdam | MR 1142906 | Zbl 0758.57011