Cet article étudie le groupe engendré par les automorphismes de l’espace projectif de dimension et par l’involution birationnelle standard de degré . Tout élément de ce groupe ne contracte que des hypersurfaces rationnelles, mais en dimension impaire il existe des éléments simples qui ont cette propriété et n’appartiennent pas au groupe. Des propriétés géométriques du groupe sont données, de même qu’une description de son intersection avec le groupe des transformations monômiales.
This article studies the group generated by automorphisms of the projective space of dimension and by the standard birational involution of degree . Every element of this group only contracts rational hypersurfaces, but in odd dimension, there are simple elements having this property which do not belong to the group. Geometric properties of the elements of the group are given, as well as a description of its intersection with monomial transformations.
@article{AIF_2015__65_6_2641_0, author = {Blanc, J\'er\'emy and Hed\'en, Isac}, title = {The group of Cremona transformations generated by linear maps and the standard involution}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2641-2680}, doi = {10.5802/aif.2999}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2641_0} }
Blanc, Jérémy; Hedén, Isac. The group of Cremona transformations generated by linear maps and the standard involution. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2641-2680. doi : 10.5802/aif.2999. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2641_0/
[1] Encyclopädie der mathematischen Wissenschaften. Band III, 2. Teil, 2 (Häfte, Teubner, Leipzig (1921-1934))
[2] Geometry of the plane Cremona maps, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1769 (2002), pp. xvi+257 | Article | MR 1874328 | Zbl 0991.14008
[3] On the factorization of Cremona plane transformations, Trans. Amer. Math. Soc., Tome 17 (1916) no. 3, pp. 295-300 | Article | MR 1501043
[4] Le transformazioni generatrici del gruppo Cremoniano nel piano., Torino Atti, Tome 36 (1901), pp. 861-874
[5] Point sets and allied Cremona groups. II, Trans. Amer. Math. Soc., Tome 17 (1916) no. 3, pp. 345-385 | Article | MR 1501047
[6] Some properties of the group of birational maps generated by the automorphisms of and the standard involution (2014) (preprint, http://arxiv.org/abs/1403.0346v2) | MR 3421645
[7] Point sets in projective spaces and theta functions, Astérisque (1988) no. 165, pp. 210 pp. (1989) | MR 1007155 | Zbl 0685.14029
[8] Cremona special sets of points in products of projective spaces, Complex and differential geometry, Springer, Heidelberg (Springer Proc. Math.) Tome 8 (2011), pp. 115-134 | Article | MR 2964472 | Zbl 1227.14020
[9] Application des idées cristallographiques à l’étude des groupes de transformations crémoniennes, 3 ième Coll. Géom. Algébrique (Bruxelles, 1959), Centre Belge Rech. Math., Louvain (1960), pp. 65-73 | MR 116236 | Zbl 0100.35306
[10] Crystallography and Cremona transformations, The geometric vein, Springer, New York-Berlin (1981), pp. 191-201 | MR 661778 | Zbl 0504.51020
[11] Polynomial automorphisms and the Jacobian conjecture, Birkhäuser Verlag, Basel, Progress in Mathematics, Tome 190 (2000), pp. xviii+329 | Article | MR 1790619 | Zbl 0962.14037
[12] On some tensor representations of the Cremona group of the projective plane, New trends in algebraic geometry (Warwick, 1996), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 264 (1999), pp. 111-150 | Article | MR 1714823 | Zbl 0980.14011
[13] On characteristic classes of determinantal Cremona transformations, Math. Ann., Tome 335 (2006) no. 2, pp. 479-487 | Article | MR 2221122 | Zbl 1097.14011
[14] Cremona transformations in plane and space, Cambridge, University Press (1927), pp. XX + 454
[15] Endliche Gruppen. I, Springer-Verlag, Berlin-New York, Die Grundlehren der Mathematischen Wissenschaften, Band 134 (1967), pp. xii+793 | MR 224703 | Zbl 0217.07201
[16] Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Uspekhi Mat. Nauk, Tome 51 (1996) no. 4(310), pp. 3-72 | Article | MR 1422227 | Zbl 0914.14005
[17] Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math., Tome 184 (1942), pp. 161-174 | MR 8915 | Zbl 0027.08503
[18] Theorie der Transformationen Im , welche keine Fundamentalcurven 1. Art besitzen und ihrer endlichen gruppen, Acta Math., Tome 21 (1897) no. 1, pp. 1-78 | Article | JFM 28.0599.03 | MR 1554887
[19] Sur la théorie des fonctions algébriques de deux variables., Journ. de Math. (4), Tome 8 (1892), pp. 385-419 | JFM 24.0376.01
[20] On polynomial rings in two variables, Nieuw Arch. Wiskunde (3), Tome 1 (1953), pp. 33-41 | MR 54574 | Zbl 0050.26002
[21] Feynman motives, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2010), pp. xiv+220 | MR 2604634 | Zbl 1192.14001
[22] Introduction to the Mori program, Springer-Verlag, New York, Universitext (2002), pp. xxiv+478 | Article | MR 1875410 | Zbl 0988.14007
[23] Polynomial automorphisms over finite fields: mimicking tame maps by the Derksen group, Serdica Math. J., Tome 37 (2011) no. 4, p. 305-322 (2012) | MR 2978501 | Zbl 1265.14006
[24] A treatise of the theory of determinants with graduated sets of exercices, Macmillan, London (1882) | JFM 14.0100.04
[25] The theory of determinants in the historical order of development. Vol. III: The period 1861 to 1880, Macmillan, London (1920)
[26] Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.), Tome 30 (1999) no. 1, pp. 95-98 | Article | MR 1686984 | Zbl 0972.14006
[27] Die Determinanten. Eine Darstellung ihrer Theorie und Anwendungen mit Rücksicht auf die neueren Forschungen, Teubner, Leipzig (1900) | JFM 31.0154.02
[28] Algebraic surfaces, Proc. Steklov Inst. Math Tome 75 (1967)
[29] Introduction to Algebraic Geometry, Oxford, at the Clarendon Press (1949), pp. xvi+446 | MR 34048 | Zbl 0576.14001
[30] The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc., Tome 17 (2004) no. 1, p. 197-227 (electronic) | Article | MR 2015334 | Zbl 1056.14085
[31] On the Directrices of a Set of Points in a Plane, Proc. London Math. Soc., Tome S2-35 (1933) no. 1, pp. 23 | Article | MR 1577398 | Zbl 0006.17703