Orthogonal forms of Kac–Moody groups are acylindrically hyperbolic
[Les formes orthogonales des groupes de Kac–Moody sont à hyperbolicité acylindrique]
Caprace, Pierre-Emmanuel ; Hume, David
Annales de l'Institut Fourier, Tome 65 (2015), p. 2613-2640 / Harvested from Numdam

Nous fournissons des conditions suffisantes garantissant qu’un groupe donné opérant par isométries sur un espace métrique géodésique soit à hyperbolicité acylindrique. Diverses applications aux groupes d’isométries d’espaces CAT(0) sont mentionnées. Nous montrons en outre qu’un groupe d’automorphismes d’un immeuble irréductible non-sphérique et non-affine est à hyperbolicité acylindrique s’il existe une chambre à stabilisateur fini dont l’orbite contienne un appartement. Ce critère est finalement appliqué aux formes orthogonales des groupes de Kac–Moody sur des corps arbitraires. Il s’applique également aux produits graphés irréductibles de groupes arbitraires, ce qui fournit une nouvelle démonstration d’un résultat récent de Minasyan–Osin.

We give sufficient conditions for a group acting on a geodesic metric space to be acylindrically hyperbolic and mention various applications to groups acting on CAT(0) spaces. We prove that a group acting on an irreducible non-spherical non-affine building is acylindrically hyperbolic provided there is a chamber with finite stabiliser whose orbit contains an apartment. Finally, we show that the following classes of groups admit an action on a building with those properties: orthogonal forms of Kac–Moody groups over arbitrary fields, and irreducible graph products of arbitrary groups - recovering a result of Minasyan–Osin.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2998
Classification:  20F67,  20E42
Mots clés: hyperbolicité, hyperbolicité acylindrique, immeubles, groupes de Kac–Moody
@article{AIF_2015__65_6_2613_0,
     author = {Caprace, Pierre-Emmanuel and Hume, David},
     title = {Orthogonal forms of Kac--Moody groups are acylindrically hyperbolic},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {2613-2640},
     doi = {10.5802/aif.2998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2613_0}
}
Caprace, Pierre-Emmanuel; Hume, David. Orthogonal forms of Kac–Moody groups are acylindrically hyperbolic. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2613-2640. doi : 10.5802/aif.2998. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2613_0/

[1] Abramenko, Peter; Brown, Kenneth S. Buildings, Springer, New York, Graduate Texts in Mathematics, Tome 248 (2008), pp. xxii+747 (Theory and applications) | Article | MR 2439729 | Zbl 1214.20033

[2] Ballmann, Werner Lectures on spaces of nonpositive curvature, Birkhäuser Verlag, Basel, DMV Seminar, Tome 25 (1995), pp. viii+112 (With an appendix by Misha Brin) | Article | MR 1377265

[3] Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji Bounded cohomology with coefficients in uniformly convex Banach spaces (http://arxiv.org/abs/1306.1542)

[4] Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji Constructing group actions on quasi-trees and applications to mapping class groups (http://arxiv.org/abs/1006.1939, to appear in Publ. Math. IHES) | MR 3415065

[5] Bestvina, Mladen; Fujiwara, Koji A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal., Tome 19 (2009) no. 1, pp. 11-40 | Article | MR 2507218 | Zbl 1203.53041

[6] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 319 (1999), pp. xxii+643 | Article | MR 1744486 | Zbl 0988.53001

[7] De Buyl, Sophie; Henneaux, Marc; Paulot, Louis Extended E 8 invariance of 11-dimensional supergravity, J. High Energy Phys. (2006) no. 2, pp. 056, 11 pp. (electronic) | Article

[8] Cantat, Serge; Lamy, Stéphane Normal subgroups in the Cremona group, Acta Math., Tome 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | Article | MR 3037611 | Zbl 1278.14017

[9] Caprace, Pierre-Emmanuel; Fujiwara, Koji Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., Tome 19 (2010) no. 5, pp. 1296-1319 | Article | MR 2585575 | Zbl 1206.20046

[10] Caprace, Pierre-Emmanuel; Marquis, Timothée Open subgroups of locally compact Kac-Moody groups, Math. Z., Tome 274 (2013) no. 1-2, pp. 291-313 | Article | MR 3054330 | Zbl 1275.20057

[11] Caprace, Pierre-Emmanuel; Monod, Nicolas Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol., Tome 2 (2009) no. 4, pp. 701-746 | Article | MR 2574741 | Zbl 1187.53037

[12] Caprace, Pierre-Emmanuel; Rémy, Bertrand Simplicity and superrigidity of twin building lattices, Invent. Math., Tome 176 (2009) no. 1, pp. 169-221 | Article | MR 2485882 | Zbl 1173.22007

[13] Caprace, Pierre-Emmanuel; Sageev, Michah Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Tome 21 (2011) no. 4, pp. 851-891 | Article | MR 2827012 | Zbl 1266.20054

[14] Dahmani, François; Guirardel, Vincent; Osin, Denis V. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces (http://arxiv.org/abs/1111.7048, to appear in Mem. Amer. Math. Soc.)

[15] Damour, Thibault; Kleinschmidt, Axel; Nicolai, Hermann Hidden symmetries and the fermionic sector of eleven-dimensional supergravity, Phys. Lett. B, Tome 634 (2006) no. 2-3, pp. 319-324 | Article | MR 2202945 | Zbl 1247.83225

[16] Davis, Michael W. Buildings are CAT (0), Geometry and cohomology in group theory (Durham, 1994), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 252 (1998), pp. 108-123 | Article | MR 1709955 | Zbl 0978.51005

[17] Ghatei, David; Horn, Max; Köhl, Ralf; Weiß, Sebastian Spin covers of maximal compact subgroups of Kac-Moody groups and spin extended Weyl groups (http://arxiv.org/abs/1502.07294)

[18] Gramlich, Ralf; Mühlherr, Bernhard Lattices from involutions of Kac-Moody groups, Oberwolfach Rep., Tome 5 (2007), p. 139-140

[19] Hainke, Guntram; Köhl, Ralf; Levy, Paul Generalized spin representations (http://arxiv.org/abs/1110.5576, to appear in Münster J. of Math.)

[20] Hartnick, Tobias; Köhl, Ralf; Mars, Andreas On topological twin buildings and topological split Kac-Moody groups, Innov. Incidence Geom., Tome 13 (2013), pp. 1-71 | MR 3173010 | Zbl 1295.51017

[21] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 34 (2001), pp. xxvi+641 (Corrected reprint of the 1978 original) | Article | MR 1834454 | Zbl 0993.53002

[22] Hume, David Embedding mapping class groups into finite products of trees (http://arxiv.org/abs/1207.2132)

[23] Marquis, Timothée Abstract simplicity of locally compact Kac-Moody groups, Compos. Math., Tome 150 (2014) no. 4, pp. 713-728 | Article | MR 3200675

[24] Marquis, Timothée Conjugacy classes and straight elements in Coxeter groups, J. Algebra, Tome 407 (2014), pp. 68-80 | Article | MR 3197152 | Zbl 1300.20046

[25] Minasyan, Ashot; Osin, Denis V. Acylindrical hyperbolicity of groups acting on trees (http://arxiv.org/abs/1310.6289, to appear in Math. Annalen) | MR 3368093

[26] Niblo, G. A.; Reeves, L. D. Coxeter groups act on CAT (0) cube complexes, J. Group Theory, Tome 6 (2003) no. 3, pp. 399-413 | Article | MR 1983376 | Zbl 1068.20040

[27] Noskov, Guennadi A.; Vinberg, Èrnest B. Strong Tits alternative for subgroups of Coxeter groups, J. Lie Theory, Tome 12 (2002) no. 1, pp. 259-264 | MR 1885045 | Zbl 0999.20029

[28] Osin, Denis V. Acylindrically hyperbolic groups (http://arxiv.org/abs/1304.1246, to appear in Trans. Amer. Math. Soc.) | MR 3430352

[29] Rémy, Bertrand Construction de réseaux en théorie de Kac-Moody, C. R. Acad. Sci. Paris Sér. I Math., Tome 329 (1999) no. 6, pp. 475-478 | Article | MR 1715140 | Zbl 0933.22029

[30] Sisto, Alessandro Contracting elements and random walks (http://arxiv.org/abs/1112.2666)

[31] Sisto, Alessandro Quasi-convexity of hyperbolically embedded subgroups (http://arxiv.org/abs/1310.7753, to appear in Math. Z.)

[32] Tits, Jacques Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra, Tome 105 (1987) no. 2, pp. 542-573 | Article | MR 873684 | Zbl 0626.22013