Soient un groupe réductif complexe et un -module. Alors , le schéma des jets d’ordre de , opère dans , le schéma des jets d’ordre de , pour tout . Nous nous intéressons à l’anneau des invariants et au morphisme induit par le morphisme du quotient catégorique : ce morphisme est-il un isomorphisme, surjectif, ou non ? En utilisant le théorème du slice de Luna, nous obtenons des critères pour que soit un isomorphisme pour tout . Nous montrons que c’est bien le cas lorsque , , , ou et est un somme directe de copies du module standard et de son dual, pourvu que soit lisse ou une intersection complète. Nous classifions toutes les représentations de telles que soit surjectif ou un isomorphisme. Enfin, nous donnons des exemples où est surjectif pour mais non surjectif pour fini, et d’autres exemples où est surjectif mais non injectif.
Let be a complex reductive group and a -module. Then the th jet scheme acts on the th jet scheme for all . We are interested in the invariant ring and whether the map induced by the categorical quotient map is an isomorphism, surjective, or neither. Using Luna’s slice theorem, we give criteria for to be an isomorphism for all , and we prove this when , , , or and is a sum of copies of the standard module and its dual, such that is smooth or a complete intersection. We classify all representations of for which is surjective or an isomorphism. Finally, we give examples where is surjective for but not for finite , and where it is surjective but not injective.
@article{AIF_2015__65_6_2571_0, author = {Linshaw, Andrew R. and Schwarz, Gerald W. and Song, Bailin}, title = {Jet schemes and invariant theory}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2571-2599}, doi = {10.5802/aif.2996}, zbl = {1342.13009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2571_0} }
Linshaw, Andrew R.; Schwarz, Gerald W.; Song, Bailin. Jet schemes and invariant theory. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2571-2599. doi : 10.5802/aif.2996. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2571_0/
[1] Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ (1998), pp. 1-32 | MR 1672108 | Zbl 0963.14015
[2] Chiral algebras, American Mathematical Society, Providence, RI, American Mathematical Society Colloquium Publications, Tome 51 (2004), pp. vi+375 | MR 2058353 | Zbl 1138.17300
[3] Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A., Tome 83 (1986) no. 10, pp. 3068-3071 | Article | MR 843307 | Zbl 0613.17012
[4] Singularités rationnelles et quotients par les groupes réductifs, Invent. Math., Tome 88 (1987) no. 1, pp. 65-68 | Article | MR 877006 | Zbl 0619.14029
[5] An introduction to motivic integration, Strings and geometry, Amer. Math. Soc., Providence, RI (Clay Math. Proc.) Tome 3 (2004), pp. 203-225 | MR 2103724 | Zbl 1156.14307
[6] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Tome 135 (1999) no. 1, pp. 201-232 | Article | MR 1664700 | Zbl 0928.14004
[7] Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000), Birkhäuser, Basel (Progr. Math.) Tome 201 (2001), pp. 327-348 | MR 1905328 | Zbl 1079.14003
[8] Invariants of -jet actions, Houston J. Math., Tome 10 (1984) no. 2, pp. 159-168 | MR 744898 | Zbl 0568.14007
[9] Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 80 (2009), pp. 505-546 | Article | MR 2483946 | Zbl 1181.14019
[10] Vertex algebras and algebraic curves, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 88 (2001), pp. xii+348 | Article | MR 1849359 | Zbl 0981.17022
[11] Vertex operator algebras and the Monster, Academic Press, Inc., Boston, MA, Pure and Applied Mathematics, Tome 134 (1988), pp. liv+508 | MR 996026 | Zbl 0674.17001
[12] The Nash problem on arc families of singularities, Duke Math. J., Tome 120 (2003) no. 3, pp. 601-620 | Article | MR 2030097 | Zbl 1052.14011
[13] Vertex algebras for beginners, American Mathematical Society, Providence, RI, University Lecture Series, Tome 10 (1998), pp. vi+201 | MR 1651389 | Zbl 0924.17023
[14] Differential algebra and algebraic groups, Academic Press, New York-London (1973), pp. xviii+446 (Pure and Applied Mathematics, Vol. 54) | MR 568864 | Zbl 0264.12102
[15] String cohomology (1995) (Lecture at Orsay)
[16] Geometrische Methoden in der Invariantentheorie, Friedr. Vieweg & Sohn, Braunschweig, Aspects of Mathematics, D1 (1984), pp. x+308 | Article | MR 768181 | Zbl 0569.14003
[17] Arc spaces and the vertex algebra commutant problem, Adv. Math., Tome 277 (2015), pp. 338-364 | Article | MR 3336089
[18] Motivic measures, Astérisque (2002) no. 276, pp. 267-297 (Séminaire Bourbaki, Vol. 1999/2000) | Numdam | MR 1886763 | Zbl 0996.14011
[19] Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris (1973), p. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33 | Numdam | MR 342523 | Zbl 0286.14014
[20] Chiral de Rham complex. II, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc., Providence, RI (Amer. Math. Soc. Transl. Ser. 2) Tome 194 (1999), pp. 149-188 | MR 1729362 | Zbl 0999.17037
[21] Chiral de Rham complex, Comm. Math. Phys., Tome 204 (1999) no. 2, pp. 439-473 | Article | MR 1704283 | Zbl 0952.14013
[22] Jet schemes of locally complete intersection canonical singularities, Invent. Math., Tome 145 (2001) no. 3, pp. 397-424 (With an appendix by David Eisenbud and Edward Frenkel) | Article | MR 1856396 | Zbl 1091.14004
[23] Arc structure of singularities, Duke Math. J., Tome 81 (1995) no. 1, p. 31-38 (1996) (A celebration of John F. Nash, Jr.) | Article | MR 1381967 | Zbl 0880.14010
[24] Representations of simple Lie groups with regular rings of invariants, Invent. Math., Tome 49 (1978) no. 2, pp. 167-191 | Article | MR 511189 | Zbl 0391.20032
[25] The global sections of the chiral de Rham complex on a Kummer surface (http://arxiv.org/abs/1312.7386)
[26] Arc spaces, motivic integration and stringy invariants, Singularity theory and its applications, Math. Soc. Japan, Tokyo (Adv. Stud. Pure Math.) Tome 43 (2006), pp. 529-572 | MR 2325153 | Zbl 1127.14004
[27] The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J. (1939), pp. xii+302 | MR 1488158 | Zbl 1024.20502