Nous donnons ici une réponse positive à une question posée par Y. Colin de Verdière concernant la réciproque du théorème suivant, dû à A. N. Varchenko : deux germes de formes volumes sont équivalents modulo difféomorphismes préservant un germe d’hypersurface à singularités isolées, si leur différence est la différentielle d’une forme dont la restriction sur la partie lisse de l’hypersurface est exacte.
We give here a positive answer to a question asked by Y. Colin de Verdière concerning the converse of the following theorem, due to A. N. Varchenko: two germs of volume forms are equivalent with respect to diffeomorphisms preserving a germ of an isolated hypersurface singularity, if their difference is the differential of a form whose restriction on the smooth part of the hypersurface is exact.
@article{AIF_2015__65_6_2437_0, author = {Kourliouros, Konstantinos}, title = {A Converse to a Theorem on Normal Forms of Volume Forms with Respect to a Hypersurface}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2437-2447}, doi = {10.5802/aif.2992}, zbl = {1336.32029}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2437_0} }
Kourliouros, Konstantinos. A Converse to a Theorem on Normal Forms of Volume Forms with Respect to a Hypersurface. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2437-2447. doi : 10.5802/aif.2992. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2437_0/
[1] Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., Tome 2 (1970), pp. 103-161 | MR 267607 | Zbl 0186.26101
[2] Singular Lagrangian manifolds and semiclassical analysis, Duke Math. J., Tome 116 (2003) no. 2, pp. 263-298 | Article | MR 1953293 | Zbl 1074.53066
[3] Cohomology and holomorphic differential forms on complex analytic spaces, Ann. Scuola Norm. Sup. Pisa (3), Tome 24 (1970), pp. 65-77 | Numdam | MR 274810 | Zbl 0191.37902
[4] Relative cohomology and volume forms, Singularities (Warsaw, 1985), PWN, Warsaw (Banach Center Publ.) Tome 20 (1988), pp. 207-222 | MR 1101840 | Zbl 0676.58014
[5] Singular Lagrangian manifolds and their Lagrangian mappings, Current problems in mathematics. Newest results, Vol. 33 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (Itogi Nauki i Tekhniki) (1988), p. 55-112, 236 (Translated in J. Soviet Math. 52 (1990), no. 4, 3246–3278) | MR 967765 | Zbl 0731.58023
[6] Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann., Tome 214 (1975), pp. 235-266 | MR 396554 | Zbl 0285.14002
[7] Frobenius manifolds and moduli spaces for singularities, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 151 (2002), pp. x+270 | Article | MR 1924259 | Zbl 1023.14018
[8] Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4), Tome 7 (1974), p. 405-430 (1975) | Numdam | MR 372243 | Zbl 0305.32008
[9] Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., Tome 14 (1971), pp. 123-142 | MR 294699 | Zbl 0224.32011
[10] Preuve d’une conjecture de Brieskorn, Manuscripta Math., Tome 2 (1970), pp. 301-308 | MR 267608 | Zbl 0194.11402
[11] Singularités Lagrangiennes, École Polytechnique (France) (2003) (Ph. D. Thesis)
[12] Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech., Tome 10 (1961), pp. 451-474 | MR 133400 | Zbl 0131.26802
[13] Local classification of volume forms in the presence of a hypersurface, Funktsional. Anal. i Prilozhen., Tome 19 (1985) no. 4, p. 23-31, 95 | MR 820081 | Zbl 0661.32017