Soit le codage standard des espaces de Banach séparables comme sous-espaces de . Dans ce papier, on montre que si est un sous-ensemble borélien d’espaces à dual séparable, alors l’application peut être réalisée par une fonction borélienne de à . En outre, cette application peut être construite de manière que l’évaluation fonctionnelle est toujours bien définie (Théorème 1). Par ailleurs, on démontre une version borélienne du théorème de Zippin. Plus précisément, on démontre qu’il existe et une fonction borélienne qui à chaque associe une copie isomorphe à à l’intérieur de (Théorème 5).
Let be the standard coding for separable Banach spaces as subspaces of . In these notes, we show that if is a Borel subset of spaces with separable dual, then the assignment can be realized by a Borel function . Moreover, this assignment can be done in such a way that the functional evaluation is still well defined (Theorem 1). Also, we prove a Borel parametrized version of Zippin’s theorem, i.e., we prove that there exists and a Borel function that assigns for each an isomorphic copy of inside of (Theorem 5).
@article{AIF_2015__65_6_2413_0, author = {Braga, Bruno de Mendon\c ca}, title = {Duality on Banach spaces and a Borel parametrized version of Zippin's theorem}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2413-2435}, doi = {10.5802/aif.2991}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2413_0} }
Braga, Bruno de Mendonça. Duality on Banach spaces and a Borel parametrized version of Zippin’s theorem. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2413-2435. doi : 10.5802/aif.2991. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2413_0/
[1] Topics in Banach space theory, Springer, New York, Graduate Texts in Mathematics, Tome 233 (2006), pp. xii+373 | MR 2192298 | Zbl 1094.46002
[2] Genericity and amalgamation of classes of Banach spaces, Adv. Math., Tome 209 (2007) no. 2, pp. 666-748 | Article | MR 2296312 | Zbl 1109.03047
[3] An ordinal version of some applications of the classical interpolation theorem, Fund. Math., Tome 152 (1997) no. 1, pp. 55-74 | MR 1434377 | Zbl 0901.46011
[4] Factoring weakly compact operators, J. Functional Analysis, Tome 17 (1974), pp. 311-327 | MR 355536 | Zbl 0306.46020
[5] Banach spaces and descriptive set theory: selected topics, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1993 (2010), pp. xii+161 | Article | MR 2598479 | Zbl 1215.46002
[6] Definability under duality, Houston J. Math., Tome 36 (2010) no. 3, pp. 781-792 | MR 2727002 | Zbl 1226.03053
[7] Some strongly bounded classes of Banach spaces, Fund. Math., Tome 193 (2007) no. 2, pp. 171-179 | Article | MR 2282714 | Zbl 1115.03061
[8] Classical descriptive set theory, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 156 (1995), pp. xviii+402 | Article | MR 1321597 | Zbl 0819.04002
[9] On Pełczyński’s paper “Universal bases” (Studia Math. 32 (1969), 247–268), Israel J. Math., Tome 22 (1975) no. 3-4, pp. 181-184 | MR 390730 | Zbl 0316.46014
[10] Notes on Descriptive Set Theory, and Applications to Banach Spaces (Class notes for Reading Course in Spring/Summer 2008)
[11] Banach spaces with separable duals, Trans. Amer. Math. Soc., Tome 310 (1988) no. 1, pp. 371-379 | Article | MR 965758 | Zbl 0706.46015