Soit un groupe algébrique complexe quasi-simple et une variété de drapeaux partiels. La projection sur des variétés de Richardson (de la variété des drapeaux complets) forment une stratification de . Nous montrons que les relations d’adhérence des variétés de Richardson projetées correspondent à celles d’un certain sous-ensemble de variétés de Schubert sur la variété de drapeaux affine de . Nous comparons aussi les classes de cohomologie équivariante et de -théorie de ces deux stratifications. Notre travail généralise celui de Knutson, Lam et Speyer pour la grassmannienne de type .
Let be a complex quasi-simple algebraic group and be a partial flag variety. The projections of Richardson varieties from the full flag variety form a stratification of . We show that the closure partial order of projected Richardson varieties agrees with that of a subset of Schubert varieties in the affine flag variety of . Furthermore, we compare the torus-equivariant cohomology and -theory classes of these two stratifications by pushing or pulling these classes to the affine Grassmannian. Our work generalizes results of Knutson, Lam, and Speyer for the Grassmannian of type .
@article{AIF_2015__65_6_2385_0, author = {He, Xuhua and Lam, Thomas}, title = {Projected Richardson varieties and affine Schubert varieties}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2385-2412}, doi = {10.5802/aif.2990}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2385_0} }
He, Xuhua; Lam, Thomas. Projected Richardson varieties and affine Schubert varieties. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2385-2412. doi : 10.5802/aif.2990. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2385_0/
[1] Singularities of generalized Richardson varieties, Comm. Algebra, Tome 40 (2012) no. 4, pp. 1466-1495 | Article | MR 2912998 | Zbl 1274.14059
[2] Combinatorics of Coxeter groups, Springer, New York, Graduate Texts in Mathematics, Tome 231 (2005), pp. xiv+363 | MR 2133266 | Zbl 1110.05001
[3] Bruhat order of Coxeter groups and shellability, Adv. in Math., Tome 43 (1982) no. 1, pp. 87-100 | Article | MR 644668 | Zbl 0481.06002
[4] Positivity in the Grothendieck group of complex flag varieties, J. Algebra, Tome 258 (2002) no. 1, pp. 137-159 (Special issue in celebration of Claudio Procesi’s 60th birthday) | Article | MR 1958901 | Zbl 1052.14054
[5] Finiteness of cominuscule quantum -theory, Ann. Sci. Éc. Norm. Supér. (4), Tome 46 (2013) no. 3, p. 477-494 (2013) | MR 3099983 | Zbl 1282.14016
[6] A Littlewood-Richardson rule for the -theory of Grassmannians, Acta Math., Tome 189 (2002) no. 1, pp. 37-78 | Article | MR 1946917 | Zbl 1090.14015
[7] Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc., Tome 16 (2003) no. 4, p. 901-915 (electronic) | Article | MR 1992829 | Zbl 1063.53090
[8] Quantum cohomology of minuscule homogeneous spaces, Transform. Groups, Tome 13 (2008) no. 1, pp. 47-89 | Article | MR 2421317 | Zbl 1147.14023
[9] Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA (1997), pp. x+495 | MR 1433132 | Zbl 1185.22001
[10] Hecke algebras and shellings of Bruhat intervals, Compositio Math., Tome 89 (1993) no. 1, pp. 91-115 | Numdam | MR 1248893 | Zbl 0817.20045
[11] -classes for matroids and equivariant localization, Duke Math. J., Tome 161 (2012) no. 14, pp. 2699-2723 | Article | MR 2993138 | Zbl 1257.05023
[12] Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc., Tome 361 (2009) no. 11, pp. 5753-5780 | Article | MR 2529913 | Zbl 1179.53087
[13] The combinatorics of Bernstein functions, Trans. Amer. Math. Soc., Tome 353 (2001) no. 3, p. 1251-1278 (electronic) | Article | MR 1804418 | Zbl 0962.14018
[14] Computation of generalized equivariant cohomologies of Kac-Moody flag varieties, Adv. Math., Tome 197 (2005) no. 1, pp. 198-221 | MR 2166181 | Zbl 1110.55003
[15] Minimal length elements in some double cosets of Coxeter groups, Adv. Math., Tome 215 (2007) no. 2, pp. 469-503 | Article | MR 2355597 | Zbl 1149.20035
[16] A subalgebra of 0-Hecke algebra, J. Algebra, Tome 322 (2009) no. 11, pp. 4030-4039 | Article | MR 2556136 | Zbl 1186.20005
[17] Normality and Cohen-Macaulayness of local models of Shimura varieties, Duke Math. J., Tome 162 (2013) no. 13, pp. 2509-2523 | Article | MR 3127807
[18] On intersections of certain partitions of a group compactification, Int. Math. Res. Not. IMRN (2011) no. 11, pp. 2534-2564 | Article | MR 2806588 | Zbl 1253.20049
[19] On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. (1965) no. 25, pp. 5-48 | Numdam | MR 185016 | Zbl 0228.20015
[20] Positroid varieties: juggling and geometry, Compos. Math., Tome 149 (2013) no. 10, pp. 1710-1752 | Article | MR 3123307
[21] Projections of Richardson varieties, J. Reine Angew. Math., Tome 687 (2014), pp. 133-157 | Article | MR 3176610
[22] The nil Hecke ring and cohomology of for a Kac-Moody group , Adv. in Math., Tome 62 (1986) no. 3, pp. 187-237 | Article | MR 866159 | Zbl 0641.17008
[23] -equivariant -theory of generalized flag varieties, J. Differential Geom., Tome 32 (1990) no. 2, pp. 549-603 http://projecteuclid.org/euclid.jdg/1214445320 | MR 1072919 | Zbl 0731.55005
[24] Minuscule alcoves for and , Manuscripta Math., Tome 102 (2000) no. 4, pp. 403-428 | Article | MR 1785323 | Zbl 0981.17003
[25] Kac-Moody groups, their flag varieties and representation theory, Birkhäuser Boston, Inc., Boston, MA, Progress in Mathematics, Tome 204 (2002), pp. xvi+606 | Article | MR 1923198 | Zbl 1026.17030
[26] Affine Stanley symmetric functions, Amer. J. Math., Tome 128 (2006) no. 6, pp. 1553-1586 http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.6lam.pdf | MR 2275911 | Zbl 1107.05095
[27] -theory Schubert calculus of the affine Grassmannian, Compos. Math., Tome 146 (2010) no. 4, pp. 811-852 | Article | MR 2660675 | Zbl 1256.14056
[28] From double quantum Schubert polynomials to -double Schur functions via the Toda lattice (http://arxiv.org/abs/1109.2193)
[29] Quantum cohomology of and homology of affine Grassmannian, Acta Math., Tome 204 (2010) no. 1, pp. 49-90 | Article | MR 2600433 | Zbl 1216.14052
[30] Total positivity for cominuscule Grassmannians, New York J. Math., Tome 14 (2008), pp. 53-99 http://nyjm.albany.edu:8000/j/2008/14_53.html | MR 2383586 | Zbl 1144.20029
[31] Total positivity in partial flag manifolds, Represent. Theory, Tome 2 (1998), pp. 70-78 | Article | MR 1606402 | Zbl 0895.14014
[32] Parabolic character sheaves. I, Mosc. Math. J., Tome 4 (2004) no. 1, p. 153-179, 311 | MR 2074987 | Zbl 1102.20030
[33] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Tome 166 (2007) no. 1, pp. 95-143 | Article | MR 2342692 | Zbl 1138.22013
[34] Twisted loop groups and their affine flag varieties, Adv. Math., Tome 219 (2008) no. 1, pp. 118-198 (With an appendix by T. Haines and Rapoport) | Article | MR 2435422 | Zbl 1159.22010
[35] Total positivity, Grassmannians, and networks (http://www-math.mit.edu/~apost/papers/tpgrass.pdf)
[36] Intersections of double cosets in algebraic groups, Indag. Math. (N.S.), Tome 3 (1992) no. 1, pp. 69-77 | Article | MR 1157520 | Zbl 0833.22001
[37] Closure relations for totally nonnegative cells in , Math. Res. Lett., Tome 13 (2006) no. 5-6, pp. 775-786 | Article | MR 2280774 | Zbl 1107.14040
[38] Affine patches on positroid varieties and affine pipe dreams, Cornell University (2010) (Ph. D. Thesis) | MR 2890196
[39] Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. (4), Tome 4 (1971), pp. 393-398 | Numdam | MR 291045 | Zbl 0236.20035
[40] Enumeration of totally positive Grassmann cells, Adv. Math., Tome 190 (2005) no. 2, pp. 319-342 | Article | MR 2102660 | Zbl 1064.05150
[41] Shelling totally nonnegative flag varieties, J. Reine Angew. Math., Tome 609 (2007), pp. 1-21 | Article | MR 2350779 | Zbl 1132.14045
[42] On the coherence conjecture of Pappas and Rapoport, Ann. of Math. (2), Tome 180 (2014) no. 1, pp. 1-85 | Article | MR 3194811 | Zbl 1300.14042