Soit un nombre premier. Nous étudions certains groupes de cohomologie étale à coefficients associés à une représentation d’Artin -adique de groupe de Galois d’un corps des nombres . Ces coefficients sont munis d’un tordu à la Tate modifié avec un indice -adique. Ces groupes sont de type cofini, et nous déterminons la caractéristique d’Euler additive. Si est totalement réel et la représentation est paire, nous étudions la relation entre le comportement ou la valeur de la fonction -adique en le point de ce domaine et les groupes de cohomologie avec torsion -adique . Dans certains cas, ceci donne une preuve courte d’une conjecture de Coates et Lichtenbaum, et de la conjecture équivariante des nombres de Tamagawa pour les fonctions classiques. Pour nos résultats impliquant des fonctions -adiques dépendent d’une conjecture de la théorie d’Iwasawa.
Let be a prime number. We study certain étale cohomology groups with coefficients associated to a -adic Artin representation of the Galois group of a number field . These coefficients are equipped with a modified Tate twist involving a -adic index. The groups are cofinitely generated, and we determine the additive Euler characteristic. If is totally real and the representation is even, we study the relation between the behaviour or the value of the -adic -function at the point in its domain, and the cohomology groups with -adic twist . In certain cases this gives short proofs of a conjecture by Coates and Lichtenbaum, and the equivariant Tamagawa number conjecture for classical -functions. For our results involving -adic -functions depend on a conjecture in Iwasawa theory.
@article{AIF_2015__65_6_2331_0, author = {de Jeu, Rob and Navilarekallu, Tejaswi}, title = {\'Etale cohomology, cofinite generation, and $p$-adic $L$-functions}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2331-2383}, doi = {10.5802/aif.2989}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2331_0} }
de Jeu, Rob; Navilarekallu, Tejaswi. Étale cohomology, cofinite generation, and $p$-adic $L$-functions. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2331-2383. doi : 10.5802/aif.2989. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2331_0/
[1] Annihilating Selmer modules, J. Reine Angew. Math., Tome 675 (2013), pp. 191-222 | MR 3021451 | Zbl 1276.11173
[2] On values of zeta functions and -adic Euler characteristics, Invent. Math., Tome 50 (1978/79) no. 1, pp. 35-64 | MR 516603 | Zbl 0409.12018
[3] On the -adic Beilinson conjecture for number fields, Pure Appl. Math. Q., Tome 5 (2009) no. 1, pp. 375-434 | Article | MR 2520465 | Zbl 1192.19003
[4] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 86 (1990), pp. 333-400 | MR 1086888 | Zbl 0768.14001
[5] Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Hermann, Paris, Actualités Scientifiques et Industrielles, No. 1314 (1965), pp. iii+146 pp. (1 foldout) | Zbl 0141.03501
[6] On main conjectures in non-commutative Iwasawa theory and related conjectures, J. Reine Angew. Math., Tome 698 (2015), pp. 105-159 | Article | MR 3294653
[7] Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math., Tome 6 (2001), p. 501-570 (electronic) | MR 1884523 | Zbl 1052.11077
[8] On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math., Tome 153 (2003) no. 2, pp. 303-359 | Article | MR 1992015 | Zbl 1142.11076
[9] Galois structure of -groups of rings of integers, -Theory, Tome 14 (1998) no. 4, pp. 319-369 | MR 1641555 | Zbl 0943.11051
[10] On -adic zeta functions, Ann. of Math. (2), Tome 98 (1973), pp. 498-550 | MR 330107 | Zbl 0279.12005
[11] The Iwasawa invariant vanishes for abelian number fields, Ann. of Math. (2), Tome 109 (1979) no. 2, pp. 377-395 | Article | MR 528968 | Zbl 0443.12001
[12] Euler characteristics in relative -groups, Bull. London Math. Soc., Tome 32 (2000) no. 3, pp. 272-284 | Article | MR 1750171 | Zbl 1017.19002
[13] The equivariant Tamagawa number conjecture: a survey, Stark’s conjectures: recent work and new directions, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 358 (2004), pp. 79-125 (With an appendix by C. Greither) | MR 2088713 | Zbl 1070.11025
[14] On the cyclotomic main conjecture for the prime 2, J. Reine Angew. Math., Tome 661 (2011), pp. 1-36 | MR 2863902 | Zbl 1242.11083
[15] Valeurs spéciales des fonctions des motifs, Astérisque (1992) no. 206, pp. Exp. No. 751, 4, 205-249 (Séminaire Bourbaki, Vol. 1991/92) | Numdam | MR 1206069 | Zbl 0799.14006
[16] On -adic -functions and cyclotomic fields. II, Nagoya Math. J., Tome 67 (1977), pp. 139-158 | MR 444614 | Zbl 0373.12007
[17] On -adic Artin -functions, Nagoya Math. J., Tome 89 (1983), pp. 77-87 | MR 692344 | Zbl 0513.12012
[18] Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J., Tome 119 (2003) no. 3, pp. 393-464 | Article | MR 2002643 | Zbl 1044.11095
[19] Cohomologie -adique et fonctions , Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Vol. 589 (1977), pp. xii+484 (Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5)) | MR 491704
[20] On -extensions of algebraic number fields, Ann. of Math. (2), Tome 98 (1973), pp. 246-326 | MR 349627 | Zbl 0285.12008
[21] Continuous étale cohomology, Math. Ann., Tome 280 (1988) no. 2, pp. 207-245 | Article | MR 929536 | Zbl 0649.14011
[22] The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand., Tome 39 (1976) no. 1, pp. 19-55 | MR 437541 | Zbl 0343.14008
[23] On the values of zeta and -functions. I, Ann. of Math. (2), Tome 96 (1972), pp. 338-360 | MR 360527 | Zbl 0251.12002
[24] Étale cohomology, Princeton University Press, Princeton, N.J. (1980), pp. xiii+323 | MR 559531 | Zbl 0433.14012
[25] Arithmetic duality theorems, Academic Press, Inc., Boston, MA, Perspectives in Mathematics, Tome 1 (1986), pp. x+421 | MR 881804 | Zbl 0613.14019
[26] Algebraic number theory, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 322 (1999), pp. xviii+571 (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder) | MR 1697859 | Zbl 0956.11021
[27] Cohomology of number fields, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 323 (2008), pp. xvi+825 | MR 2392026 | Zbl 1136.11001
[28] -adic -functions and -adic representations, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, SMF/AMS Texts and Monographs, Tome 3 (2000), pp. xx+150 (Translated from the 1995 French original by Leila Schneps and revised by the author) | MR 1743508 | Zbl 0988.11055
[29] Report on -adic -functions over totally real fields, Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), Soc. Math. France, Paris (Astérisque) Tome 61 (1979), pp. 177-192 | MR 556672
[30] On the relation between 2 and in Galois cohomology of number fields, Compositio Math., Tome 133 (2002) no. 3, pp. 267-288 | Article | MR 1930978 | Zbl 1021.11029
[31] Linear representations of finite groups, Springer-Verlag, New York (1977), pp. x+170 (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | MR 450380 | Zbl 0355.20006
[32] Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm (1963), pp. 288-295 | MR 175892 | Zbl 0126.07002
[33] Relations between and Galois cohomology, Invent. Math., Tome 36 (1976), pp. 257-274 | MR 429837 | Zbl 0359.12011
[34] Introduction to cyclotomic fields, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 83 (1997), pp. xiv+487 | MR 1421575 | Zbl 0484.12001
[35] The Iwasawa conjecture for totally real fields, Ann. of Math. (2), Tome 131 (1990) no. 3, pp. 493-540 | MR 1053488 | Zbl 0719.11071