The lattice point counting problem on the Heisenberg groups
[Le problème dénombrement des points d’un réseau dans les groupes de Heisenberg]
Garg, Rahul ; Nevo, Amos ; Taylor, Krystal
Annales de l'Institut Fourier, Tome 65 (2015), p. 2199-2233 / Harvested from Numdam

Nous considérons les normes radiales et Heisenberg-homogènes sur les groupes de Heisenberg données par N α,A ((z,t))=z α +At α/2 1/α , pour α2 et A>0. Cette famille naturelle inclut la norme canonique de Cygan-Korányi, qui correspond à α=4. Nous étudions le problème de dénombrement des points d’un réseau dans les groupes de Heisenberg, et nous établissons un terme d’erreur sur le nombre d’éléments du réseau des points entiers dans une boule de grand rayon R. L’exposant utilisé pour le terme d’erreur dans le cas α=2 est optimal, en toute dimension.

We consider radial and Heisenberg-homogeneous norms on the Heisenberg groups given by N α,A ((z,t))=(z α +At α/2 ) 1/α , for α2 and A>0. This natural family includes the canonical Cygan-Korányi norm, corresponding to α=4. We study the lattice points counting problem on the Heisenberg groups, namely establish an error estimate for the number of points that the lattice of integral points has in a ball of large radius R. The exponent we establish for the error in the case α=2 is the best possible, in all dimensions.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2986
Classification:  11P21,  43A80,  42B99,  26D10
Mots clés: Groupes de Heisenberg, réseau de points, formule de sommes de Poisson, norme de Cygan-Koranyi
@article{AIF_2015__65_5_2199_0,
     author = {Garg, Rahul and Nevo, Amos and Taylor, Krystal},
     title = {The lattice point counting problem  on the Heisenberg groups},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {2199-2233},
     doi = {10.5802/aif.2986},
     mrnumber = {3449210},
     zbl = {1358.52017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_5_2199_0}
}
Garg, Rahul; Nevo, Amos; Taylor, Krystal. The lattice point counting problem  on the Heisenberg groups. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2199-2233. doi : 10.5802/aif.2986. http://gdmltest.u-ga.fr/item/AIF_2015__65_5_2199_0/

[1] Breuillard, Emmanuel; Le Donne, Enrico On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry, Proc. Natl. Acad. Sci. USA, Tome 110 (2013) no. 48, pp. 19220-19226 | Article | MR 3153949 | Zbl 1294.53041

[2] Chamizo, Fernando Lattice points in bodies of revolution, Acta Arith., Tome 85 (1998) no. 3, pp. 265-277 | MR 1627839 | Zbl 0919.11061

[3] Cowling, Michael Unitary and uniformly bounded representations of some simple Lie groups, Harmonic analysis and group representations, Liguori, Naples (1982), pp. 49-128 | MR 777340

[4] Cowling, Michael; Dooley, Anthony H.; Korányi, Adam; Ricci, Fulvio H-type groups and Iwasawa decompositions, Adv. Math., Tome 87 (1991) no. 1, pp. 1-41 | Article | MR 1102963 | Zbl 0761.22010

[5] Cygan, Jacek Wiener’s test for the Brownian motion on the Heisenberg group, Colloq. Math., Tome 39 (1978) no. 2, pp. 367-373 | MR 522380 | Zbl 0409.60075

[6] Cygan, Jacek Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc., Tome 83 (1981) no. 1, p. 69-70 | Article | MR 619983 | Zbl 0475.43010

[7] Duchin, Moon; Mooney, Christopher Fine asymptotic geometry in the Heisenberg group, Indiana Univ. Math. J., Tome 63 (2014) no. 3, pp. 885-916 | Article | MR 3254527 | Zbl 1346.20055

[8] Erdélyi, A. Asymptotic expansions, Dover Publications, Inc., New York (1956), pp. vi+108 | MR 78494 | Zbl 0070.29002

[9] Frank, Rupert L.; Lieb, Elliott H. Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2), Tome 176 (2012) no. 1, pp. 349-381 | Article | MR 2925386 | Zbl 1252.42023

[10] Gorodnik, Alexander; Nevo, Amos Counting lattice points, J. Reine Angew. Math., Tome 663 (2012), pp. 127-176 | Article | Zbl 1248.37011

[11] Grafakos, Loukas Classical Fourier analysis, Springer, New York, Graduate Texts in Mathematics, Tome 249 (2008), pp. xvi+489 | Zbl 1220.42001

[12] Herz, C. S. On the number of lattice points in a convex set, Amer. J. Math., Tome 84 (1962), pp. 126-133 | Zbl 0113.03703

[13] Hlawka, Edmund Über Integrale auf konvexen Körpern. I, Monatsh. Math., Tome 54 (1950), pp. 1-36 | Zbl 0036.30902

[14] Ivić, A.; Krätzel, E.; Kühleitner, M.; Nowak, W. G. Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic, Elementare und analytische Zahlentheorie, Franz Steiner Verlag Stuttgart, Stuttgart (Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, 20) (2006), pp. 89-128 | Zbl 1177.11084

[15] Khosravi, Mahta; Petridis, Yiannis N. The remainder in Weyl’s law for n-dimensional Heisenberg manifolds, Proc. Amer. Math. Soc., Tome 133 (2005) no. 12, p. 3561-3571 (electronic) | Article | Zbl 1080.35054

[16] Korányi, Adam Geometric properties of Heisenberg-type groups, Adv. in Math., Tome 56 (1985) no. 1, pp. 28-38 | Article | Zbl 0589.53053

[17] Krätzel, Ekkehard Lattice points, Kluwer Academic Publishers Group, Dordrecht, Mathematics and its Applications (East European Series), Tome 33 (1988), pp. 320 | Zbl 0675.10031

[18] Krätzel, Ekkehard Lattice points in super spheres, Comment. Math. Univ. Carolin., Tome 40 (1999) no. 2, pp. 373-391 | Zbl 0993.11050

[19] Krätzel, Ekkehard Lattice points in some special three-dimensional convex bodies with points of Gaussian curvature zero at the boundary, Comment. Math. Univ. Carolin., Tome 43 (2002) no. 4, pp. 755-771 | Zbl 1064.11064

[20] Krätzel, Ekkehard Lattice points in three-dimensional convex bodies with points of Gaussian curvature zero at the boundary, Monatsh. Math., Tome 137 (2002) no. 3, pp. 197-211 | Article | Zbl 1016.11045

[21] Krätzel, Ekkehard; Nowak, Werner Georg The lattice discrepancy of bodies bounded by a rotating Lamé’s curve, Monatsh. Math., Tome 154 (2008) no. 2, pp. 145-156 | Article | Zbl 1253.11092

[22] Krätzel, Ekkehard; Nowak, Werner Georg The lattice discrepancy of certain three-dimensional bodies, Monatsh. Math., Tome 163 (2011) no. 2, pp. 149-174 | Article | Zbl 1258.11087

[23] Nowak, Werner Georg On the lattice discrepancy of bodies of rotation with boundary points of curvature zero, Arch. Math. (Basel), Tome 90 (2008) no. 2, pp. 181-192 | Article | Zbl 1139.11042

[24] Parkkonen, Jouni; Paulin, Frédéric Counting and equidistribution in Heisenberg groups (http://arxiv.org/abs/1402.7225)

[25] Peter, Manfred The local contribution of zeros of curvature to lattice point asymptotics, Math. Z., Tome 233 (2000) no. 4, pp. 803-815 | Article | Zbl 1125.11343

[26] Peter, Manfred Lattice points in convex bodies with planar points on the boundary, Monatsh. Math., Tome 135 (2002) no. 1, pp. 37-57 | Article | Zbl 1055.11059

[27] Randol, Burton A lattice-point problem, Trans. Amer. Math. Soc., Tome 121 (1966), pp. 257-268 | Zbl 0135.10601

[28] Randol, Burton A lattice-point problem. II, Trans. Amer. Math. Soc., Tome 125 (1966), pp. 101-113 | Zbl 0161.04902

[29] Randol, Burton On the asymptotic behavior of the Fourier transform of the indicator function of a convex set, Trans. Amer. Math. Soc., Tome 139 (1969), pp. 279-285 | Zbl 0183.26905

[30] Randol, Burton On the Fourier transform of the indicator function of a planar set., Trans. Amer. Math. Soc., Tome 139 (1969), pp. 271-278 | Zbl 0183.26904

[31] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 43 (1993), pp. xiv+695 (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | Zbl 0821.42001

[32] Stein, Elias M.; Wainger, Stephen Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., Tome 84 (1978) no. 6, pp. 1239-1295 | Article | Zbl 0393.42010