Successive minima of toric height functions
[Minimums successifs des fonctions hauteurs toriques]
Burgos Gil, José Ignacio ; Philippon, Patrice ; Sombra, Martín
Annales de l'Institut Fourier, Tome 65 (2015), p. 2145-2197 / Harvested from Numdam

Étant donné un -diviseur torique métrisé d’une variété torique sur un corps global, nous démontrons une formule pour le minimum essentiel de la fonction hauteur associée. Sous des hypothèses de positivité convenables, nous donnons également des formules pour tous les minimums successifs. Nous appliquons ces résultats à l’étude, dans le cadre torique, des relations entre les minimums successifs et d’autres invariants arithmétiques comme la hauteur et le volume arithmétique. Nous appliquons aussi nos formules au calcul des minimums successifs de plusieurs familles d’exemples, incluant les espaces projectifs pondérés, les fibrés toriques et les translatés de sous-tores.

Given a toric metrized -divisor on a toric variety over a global field, we give a formula for the essential minimum of the associated height function. Under suitable positivity conditions, we also give formulae for all the successive minima. We apply these results to the study, in the toric setting, of the relation between the successive minima and other arithmetic invariants like the height and the arithmetic volume. We also apply our formulae to compute the successive minima for several families of examples, including weighted projective spaces, toric bundles and translates of subtori.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2985
Classification:  14G40,  14M25,  52A41
Mots clés: Hauteur, minimum essentiel, minimums successifs, variété torique, -diviseur métrisé torique, fonction concave, dualité de Legendre-Fenchel
@article{AIF_2015__65_5_2145_0,
     author = {Burgos Gil, Jos\'e Ignacio and Philippon, Patrice and Sombra, Mart\'\i n},
     title = {Successive minima of toric height functions},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {2145-2197},
     doi = {10.5802/aif.2985},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_5_2145_0}
}
Burgos Gil, José Ignacio; Philippon, Patrice; Sombra, Martín. Successive minima of toric height functions. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2145-2197. doi : 10.5802/aif.2985. http://gdmltest.u-ga.fr/item/AIF_2015__65_5_2145_0/

[1] Amoroso, Francesco; Viada, Evelina Small points on subvarieties of a torus, Duke Math. J., Tome 150 (2009) no. 3, pp. 407-442 | Zbl 1234.11081

[2] Avendaño, Martin; Krick, Teresa; Sombra, Martin Factoring bivariate sparse (lacunary) polynomials, J. Complexity, Tome 23 (2007) no. 2, pp. 193-216 | Article | Zbl 1170.12004

[3] Baker, Matthew H.; Rumely, Robert Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble), Tome 56 (2006) no. 3, pp. 625-688 http://aif.cedram.org/item?id=AIF_2006__56_3_625_0 | Zbl 1234.11082

[4] Berman, Robert; Boucksom, Sébastien Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Tome 181 (2010) no. 2, pp. 337-394 | Article | Zbl 1208.32020

[5] Bilu, Yuri Limit distribution of small points on algebraic tori, Duke Math. J., Tome 89 (1997) no. 3, pp. 465-476 | Article | Zbl 0918.11035

[6] Bombieri, Enrico; Gubler, Walter Heights in Diophantine geometry, Cambridge University Press, Cambridge, New Mathematical Monographs, Tome 4 (2006), pp. xvi+652 | Article | Zbl 1115.11034

[7] Bost, J.-B.; Gillet, H.; Soulé, C. Heights of projective varieties and positive Green forms, J. Amer. Math. Soc., Tome 7 (1994) no. 4, pp. 903-1027 | Article | Zbl 0973.14013

[8] Boyd, Stephen; Vandenberghe, Lieven Convex optimization, Cambridge University Press, Cambridge (2004), pp. xiv+716 | Article | Zbl 1058.90049

[9] Buczynska, Weronika Fake weighted projective spaces, Warsaw Univ. (Poland) (2002) (Masters thesis)

[10] Burgos Gil, J. I.; Moriwaki, A.; Philippon, P.; Sombra, M. Arithmetic positivity on toric varieties (to appear in J. Alg. Geom., http://arxiv.org/abs/1210.7692)

[11] Burgos Gil, José Ignacio; Philippon, Patrice; Sombra, Martín Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque (2014) no. 360, pp. vi+222

[12] Chambert-Loir, Antoine Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Tome 595 (2006), pp. 215-235 | Article | Zbl 1112.14022

[13] Chambert-Loir, Antoine; Thuillier, Amaury Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier (Grenoble), Tome 59 (2009) no. 3, pp. 977-1014 http://aif.cedram.org/item?id=AIF_2009__59_3_977_0 | Numdam | Zbl 1192.14020

[14] Chen, Huayi Differentiability of the arithmetic volume function, J. Lond. Math. Soc. (2), Tome 84 (2011) no. 2, pp. 365-384 | Article | Zbl 1228.14022

[15] David, Sinnou; Philippon, Patrice Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Tome 28 (1999) no. 3, pp. 489-543 | Numdam | Zbl 1002.11055

[16] Dèbes, Pierre Density results for Hilbert subsets, Indian J. Pure Appl. Math., Tome 30 (1999) no. 1, pp. 109-127 | Zbl 0923.12001

[17] Favre, Charles; Rivera-Letelier, Juan Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Tome 335 (2006) no. 2, pp. 311-361 | Article | Zbl 1175.11029

[18] Gubler, Walter Local and canonical heights of subvarieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Tome 2 (2003) no. 4, pp. 711-760 | Numdam | Zbl 1170.14303

[19] Hindry, Marc; Silverman, Joseph H. Diophantine geometry, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 201 (2000), pp. xiv+558 (An introduction) | Article | Zbl 0948.11023

[20] Lang, Serge Algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 211 (2002), pp. xvi+914 | Article | Zbl 0984.00001

[21] Liu, Qing Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, Oxford Graduate Texts in Mathematics, Tome 6 (2002), pp. xvi+576 (Translated from the French by Reinie Erné, Oxford Science Publications) | Zbl 0996.14005

[22] Neukirch, Jürgen Algebraic number theory, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 322 (1999), pp. xviii+571 (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder) | Article | Zbl 0956.11021

[23] Philippon, Patrice; Sombra, Martin Quelques aspects diophantiens des variétés toriques projectives, Diophantine approximation, SpringerWienNewYork, Vienna (Dev. Math.) Tome 16 (2008), pp. 295-338 | Article | Zbl 1153.11029

[24] Rockafellar, R. Tyrrell Convex analysis, Princeton University Press, Princeton, N.J., Princeton Mathematical Series, No. 28 (1970), pp. xviii+451 | Zbl 0932.90001

[25] Sombra, Martin Minimums successifs des variétés toriques projectives, J. Reine Angew. Math., Tome 586 (2005), pp. 207-233 | Article | Zbl 1080.14060

[26] Szpiro, L.; Ullmo, E.; Zhang, S. Équirépartition des petits points, Invent. Math., Tome 127 (1997) no. 2, pp. 337-347 | Article | Zbl 0991.11035

[27] Weil, André Basic number theory, Springer-Verlag, New York-Berlin (1974), pp. xviii+325 (Die Grundlehren der Mathematischen Wissenschaften, Band 144) | Zbl 0326.12001

[28] Yuan, Xinyi Big line bundles over arithmetic varieties, Invent. Math., Tome 173 (2008) no. 3, pp. 603-649 | Article | Zbl 1146.14016

[29] Zhang, Shouwu Positive line bundles on arithmetic varieties, J. Amer. Math. Soc., Tome 8 (1995) no. 1, pp. 187-221 | Article | Zbl 0861.14018

[30] Zhang, Shouwu Small points and adelic metrics, J. Algebraic Geom., Tome 4 (1995) no. 2, pp. 281-300 | Zbl 0861.14019