On considère le problème de determiner toutes les couples de classes de Chern de fibrés vectoriels de rang qui sont realisées comme conoyaux de matrices antisymétriques de formes linéaires en trois variables, de taille et rang constant . Le problème est complètement résolu dans le cas “stable”, à savoir lorsque , où on démontre que la condition supplémentaire est nécessaire et suffisante. Dans le cas , on prouve l’existence de fibrés globalement engendrés qui ne peuvent pas correspondre à des matrices du type ci-dessus, certains même définissant un plongement de dans une Grassmannienne. Notre résultat étend des travaux antérieurs sur le cas .
We consider the problem of determining all pairs of Chern classes of rank bundles that are cokernel of a skew-symmetric matrix of linear forms in variables, having constant rank and size . We completely solve the problem in the “stable” range, i.e. for pairs with , proving that the additional condition is necessary and sufficient. For , we prove that there exist globally generated bundles, some even defining an embedding of in a Grassmannian, that cannot correspond to a matrix of the above type. This extends previous work on .
@article{AIF_2015__65_5_2069_0, author = {Boralevi, Ada and Mezzetti, Emilia}, title = {Planes of matrices of constant rank and globally generated vector bundles}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {2069-2089}, doi = {10.5802/aif.2983}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_5_2069_0} }
Boralevi, Ada; Mezzetti, Emilia. Planes of matrices of constant rank and globally generated vector bundles. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2069-2089. doi : 10.5802/aif.2983. http://gdmltest.u-ga.fr/item/AIF_2015__65_5_2069_0/
[1] Globally Generated Vector Bundles on with (2013) (http://arxiv.org/abs/1305.3464)
[2] Subvarieties of Grassmannians (1996) (http://www.mat.ucm.es/~arrondo/trento.pdf)
[3] Linear spaces of matrices of constant rank and instanton bundles, Adv. Math., Tome 248 (2013), pp. 895-920 | Zbl 1291.14063
[4] A note on spaces of symmetric matrices, Linear Algebra Appl., Tome 426 (2007) no. 2-3, pp. 533-539 | Zbl 1126.15019
[5] Linear congruences and hyperbolic systems of conservation laws, Projective varieties with unexpected properties, Walter de Gruyter GmbH & Co. KG, Berlin (2005), pp. 209-230 | Zbl 1101.14062
[6] Chern classes of rank two globally generated vector bundles on , Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., Tome 24 (2013) no. 2, pp. 147-163 | Zbl 1285.14026
[7] Vector spaces of skew-symmetric matrices of constant rank, Linear Algebra Appl., Tome 434 (2011) no. 12, pp. 2383-2403 | Zbl 1215.15017
[8] Residues and zero-cycles on algebraic varieties, Ann. of Math. (2), Tome 108 (1978) no. 3, pp. 461-505 | Zbl 0423.14001
[9] Stable vector bundles of rank on , Math. Ann., Tome 238 (1978) no. 3, pp. 229-280 | Zbl 0411.14002
[10] On symmetric degeneracy loci, spaces of symmetric matrices of constant rank and dual varieties, Math. Ann., Tome 314 (1999) no. 1, pp. 159-174 | Zbl 0949.14028
[11] Stabilité et amplitude sur , Vector bundles and differential equations (Proc. Conf., Nice, 1979), Birkhäuser, Boston, Mass. (Progr. Math.) Tome 7 (1980), pp. 145-182 | Zbl 0508.14010
[12] On linear spaces of skew-symmetric matrices of constant rank, Manuscripta Math., Tome 117 (2005) no. 3, pp. 319-331 | Zbl 1084.14050
[13] On globally generated vector bundles on projective spaces, J. Pure Appl. Algebra, Tome 213 (2009) no. 11, pp. 2141-2146 | Zbl 1166.14011
[14] On the dimension of spaces of linear transformations satisfying rank conditions, Linear Algebra Appl., Tome 78 (1986), pp. 1-10 | Zbl 0588.15002
[15] Spaces of matrices of fixed rank, Linear and Multilinear Algebra, Tome 20 (1987) no. 2, pp. 171-174 | Zbl 0611.15002
[16] Spaces of matrices of fixed rank. II, Linear Algebra Appl., Tome 235 (1996), pp. 163-169 | Zbl 0872.15011