Eigenvalue asymptotics for Schrödinger operators on sparse graphs
[Asymptotique des valeurs propres pour les opérateurs de Schrödinger agissant sur des graphes éparses]
Bonnefont, Michel ; Golénia, Sylvain ; Keller, Matthias
Annales de l'Institut Fourier, Tome 65 (2015), p. 1969-1998 / Harvested from Numdam

Nous considérons des opérateurs de Schrödinger agissant sur des graphes éparses. Le fait d’être éparse est équivalent à une inégalité fonctionnelle pour le Laplacien. En particulier il y a des conséquences spectrales fortes pour le Laplacien quand le graphe est éparse : caractérisation de son domaine de forme et de l’absence du spectre essentiel. Dans ce dernier cas, nous calculons l’asymptotique des valeurs propres.

We consider Schrödinger operators on sparse graphs. The geometric definition of sparseness turn out to be equivalent to a functional inequality for the Laplacian. In consequence, sparseness has in turn strong spectral and functional analytic consequences. Specifically, one consequence is that it allows to completely describe the form domain. Moreover, as another consequence it leads to a characterization for discreteness of the spectrum. In this case we determine the first order of the corresponding eigenvalue asymptotics.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2979
Classification:  47A10,  34L20,  05C63,  47B25,  47A63
Mots clés: Laplacien discret, graphe locallement fini, valeurs propres, asymptotique, planarité, éparse, inégalité fonctionelle
@article{AIF_2015__65_5_1969_0,
     author = {Bonnefont, Michel and Gol\'enia, Sylvain and Keller, Matthias},
     title = {Eigenvalue asymptotics for Schr\"odinger operators on sparse graphs},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {1969-1998},
     doi = {10.5802/aif.2979},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_5_1969_0}
}
Bonnefont, Michel; Golénia, Sylvain; Keller, Matthias. Eigenvalue asymptotics for Schrödinger operators on sparse graphs. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1969-1998. doi : 10.5802/aif.2979. http://gdmltest.u-ga.fr/item/AIF_2015__65_5_1969_0/

[1] Alon, Noga; Angel, Omer; Benjamini, Itai; Lubetzky, Eyal Sums and products along sparse graphs, Israel J. Math., Tome 188 (2012), pp. 353-384 | Article | Zbl 1288.05124

[2] Bauer, Frank; Hua, Bobo; Jost, Jürgen The dual Cheeger constant and spectra of infinite graphs, Adv. Math., Tome 251 (2014), pp. 147-194 | Article | Zbl 1285.05133

[3] Bauer, Frank; Jost, Jürgen; Liu, Shiping Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator, Math. Res. Lett., Tome 19 (2012) no. 6, pp. 1185-1205 | Article | Zbl 1297.05143

[4] Bauer, Frank; Keller, Matthias; Wojciechowski, Radosław K. Cheeger inequalities for unbounded graph Laplacians, J. Eur. Math. Soc. (JEMS), Tome 17 (2015) no. 2, pp. 259-271 | Article

[5] Breuer, Jonathan Singular continuous spectrum for the Laplacian on certain sparse trees, Comm. Math. Phys., Tome 269 (2007) no. 3, pp. 851-857 | Article | Zbl 1120.39023

[6] Dodziuk, J.; Kendall, W. S. Combinatorial Laplacians and isoperimetric inequality, From local times to global geometry, control and physics (Coventry, 1984/85), Longman Sci. Tech., Harlow (Pitman Res. Notes Math. Ser.) Tome 150 (1986), pp. 68-74 | Zbl 0619.05005

[7] Dodziuk, Jozef Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc., Tome 284 (1984) no. 2, pp. 787-794 | Article | Zbl 0512.39001

[8] Dodziuk, Józef Elliptic operators on infinite graphs, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ (2006), pp. 353-368 | Zbl 1127.58034

[9] Dodziuk, Józef; Mathai, Varghese Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians, The ubiquitous heat kernel, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 398 (2006), pp. 69-81 | Article | Zbl 1207.81024

[10] Erdős, P.; Graham, R. L.; Szemeredi, E. On sparse graphs with dense long paths, Computers and mathematics with applications, Pergamon, Oxford (1976), pp. 365-369 | Zbl 0328.05123

[11] Fujiwara, Koji The Laplacian on rapidly branching trees, Duke Math. J., Tome 83 (1996) no. 1, pp. 191-202 | Article | Zbl 0856.58044

[12] Golénia, Sylvain Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians, J. Funct. Anal., Tome 266 (2014) no. 5, pp. 2662-2688 | Article | Zbl 1292.35300

[13] Higuchi, Yusuke Combinatorial curvature for planar graphs, J. Graph Theory, Tome 38 (2001) no. 4, pp. 220-229 | Article | Zbl 0996.05041

[14] Jost, J.; Liu, S. Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs (2011) (http://arxiv.org/abs/1103.4037v2)

[15] Keller, M.; Lenz, D. Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom., Tome 5 (2010) no. 4, pp. 198-224 | Article | Zbl 1207.47032

[16] Keller, M.; Schmidt, M. A Feynman-Kac-Itô Formula for magnetic Schrödinger operators on graphs (2012) (http://arxiv.org/abs/1301.1304)

[17] Keller, Matthias The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann., Tome 346 (2010) no. 1, pp. 51-66 | Article | Zbl 1285.05115

[18] Keller, Matthias Curvature, geometry and spectral properties of planar graphs, Discrete Comput. Geom., Tome 46 (2011) no. 3, pp. 500-525 | Article | Zbl 1228.05129

[19] Keller, Matthias; Lenz, Daniel Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math., Tome 666 (2012), pp. 189-223 | Article | Zbl 1252.47090

[20] Keller, Matthias; Lenz, Daniel; Wojciechowski, Radosław K. Volume growth, spectrum and stochastic completeness of infinite graphs, Math. Z., Tome 274 (2013) no. 3-4, pp. 905-932 | Article | Zbl 1269.05051

[21] Keller, Matthias; Peyerimhoff, Norbert Cheeger constants, growth and spectrum of locally tessellating planar graphs, Math. Z., Tome 268 (2011) no. 3-4, pp. 871-886 | Article | Zbl 1250.05039

[22] Lee, Audrey; Streinu, Ileana Pebble game algorithms and sparse graphs, Discrete Math., Tome 308 (2008) no. 8, pp. 1425-1437 | Article | Zbl 1136.05062

[23] Lin, Yong; Yau, Shing-Tung Ricci curvature and eigenvalue estimate on locally finite graphs, Math. Res. Lett., Tome 17 (2010) no. 2, pp. 343-356 | Article | Zbl 1232.31003

[24] Loréa, M. On matroidal families, Discrete Math., Tome 28 (1979) no. 1, pp. 103-106 | Article | Zbl 0409.05050

[25] Mohar, Bojan Isoperimetric inequalities, growth, and the spectrum of graphs, Linear Algebra Appl., Tome 103 (1988), pp. 119-131 | Article | Zbl 0658.05055

[26] Mohar, Bojan Some relations between analytic and geometric properties of infinite graphs, Discrete Math., Tome 95 (1991) no. 1-3, pp. 193-219 (Directions in infinite graph theory and combinatorics (Cambridge, 1989)) | Article | Zbl 0801.05051

[27] Mohar, Bojan Many large eigenvalues in sparse graphs, European J. Combin., Tome 34 (2013) no. 7, pp. 1125-1129 | Article | Zbl 1292.05178

[28] Reed, Michael; Simon, Barry Methods of modern mathematical physics. I, II and IV. Functional analysis, Fourier, Self-adjointness, Academic Press, New York-London (1975) | Zbl 0242.46001

[29] Stollmann, Peter; Voigt, Jürgen Perturbation of Dirichlet forms by measures, Potential Anal., Tome 5 (1996) no. 2, pp. 109-138 | Article | Zbl 0861.31004

[30] Weidmann, Joachim Lineare Operatoren in Hilberträumen. Teil 1, B. G. Teubner, Stuttgart, Mathematische Leitfäden. [Mathematical Textbooks] (2000), pp. 475 (Grundlagen. [Foundations]) | Article | Zbl 0344.47001

[31] Woess, Wolfgang A note on tilings and strong isoperimetric inequality, Math. Proc. Cambridge Philos. Soc., Tome 124 (1998) no. 3, pp. 385-393 | Article | Zbl 0914.05015

[32] Wojciechowski, Radoslaw Krzysztof Stochastic completeness of graphs, ProQuest LLC, Ann Arbor, MI (2008), pp. 87 (Thesis (Ph.D.)–City University of New York)