On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated
[Sur les métriques singulières minimales d’une certaine classe de fibrés en droites dont l’anneau des sections n’est pas de type fini]
Koike, Takayuki
Annales de l'Institut Fourier, Tome 65 (2015), p. 1953-1967 / Harvested from Numdam

On s’intéresse à la régularité d’une métrique singulière minimale d’un fibré en droites. Une des conséquences principales du résultat général de cet article est l’existence des métriques Hermitiennes lisses à courbure semi-positive sur X. Ici, X denote l’exemple de Zariski d’un fibré en droites défini sur l’éclatement du plan projectif en douze points. C’est un exemple de fibré en droites qui est nef, gros et non semi-ample et dont l’anneau des sections n’est pas de type fini. Nous généralisons ce résultat au cas de la dimension supérieure lorsque le lieu de base stable d’un fibré en droites est une hypersurface lisse avec un voisinage tubulaire holomorphe.

Wea are interested in the regularity of a minimal singular metric of a line bundle. One main conclusion of our general result in this paper is the existence of smooth Hermitian metrics with semi-positive curvatures on the so-called Zariski’s example of a line bundle defined over the blow-up of 2 at twelve points. This is an example of a line bundle which is nef, big, not semi-ample, and whose section ring is not finitely generated. We generalize this result to the higher dimensional case when the stable base locus of a line bundle is a smooth hypersurface with a holomorphic tubular neighborhood.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2978
Classification:  32J25,  14C20
Mots clés: métriques singulières minimales, voisinages tubulaires, l’exemple de Zariski
@article{AIF_2015__65_5_1953_0,
     author = {Koike, Takayuki},
     title = {On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {1953-1967},
     doi = {10.5802/aif.2978},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_5_1953_0}
}
Koike, Takayuki. On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1953-1967. doi : 10.5802/aif.2978. http://gdmltest.u-ga.fr/item/AIF_2015__65_5_1953_0/

[1] Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Monge-Ampère equations in big cohomology classes, Acta Math., Tome 205 (2010) no. 2, pp. 199-262 | Article | Zbl 1213.32025

[2] Demailly, Jean-Pierre Complex Analytic and Differential Geometry (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/analmeth_book.pdf)

[3] Demailly, Jean-Pierre Analytic methods in algebraic geometry, International Press, Somerville, MA; Higher Education Press, Beijing, Surveys of Modern Mathematics, Tome 1 (2012), pp. viii+231 | Zbl 1271.14001

[4] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Tome 3 (1994) no. 2, pp. 295-345 | Zbl 0827.14027

[5] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Tome 12 (2001) no. 6, pp. 689-741 | Article | Zbl 1111.32302

[6] Fujino, Osamu A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math., Tome 681 (2013), pp. 149-174 | Zbl 1285.32009

[7] Grauert, Hans Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Tome 146 (1962), pp. 331-368 | Zbl 0173.33004

[8] Lazarsfeld, Robert Positivity in algebraic geometry. I, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 48 (2004), pp. xviii+387 (Classical setting: line bundles and linear series) | Article | Zbl 1093.14500

[9] Ohsawa, Takeo Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci., Tome 20 (1984) no. 1, pp. 21-38 | Article | Zbl 0568.32018

[10] Rossi, Hugo Strongly pseudoconvex manifolds, Lectures in Modern Analysis and Applications, I, Springer, Berlin (1969), pp. 10-29 | Zbl 0179.40102