Un moyen géométrique d’encoder les singularités d’une pseudovariété stratifiée est de munir son intérieur d’une métrique cuspidale fibrée itérée. Pour une telle métrique, nous développons et étudions un calcul pseudodifférentiel généralisant le -calcul de Mazzeo et Melrose. Notre point de départ est l’observation bien connue qu’une pseudovariété stratifiée peut être « désingularisée » en variété à coins fibrés. Cela nous permet de définir les opérateurs pseudodifférentiels comme des distributions conormales sur un espace double éclaté approprié. Des applications symboles sont introduites, conduisant à la notion d’ellipticité pleine. Nous utilisons cela pour construire des paramétrix fins et pour caractériser les propriétés de nos opérateurs pseudodifférentiels, comme le fait d’être de Fredholm ou compacts. Nous introduisons aussi une version semi-classique du calcul que nous utilisons pour établir une dualité de Poincaré entre la -homologie de la pseudovariété stratifiée et le -groupe des opérateurs pleinement elliptiques.
One way to geometrically encode the singularities of a stratified pseudomanifold is to endow its interior with an iterated fibred cusp metric. For such a metric, we develop and study a pseudodifferential calculus generalizing the -calculus of Mazzeo and Melrose. Our starting point is the well-known observation that a stratified pseudomanifold can be ‘resolved’ into a manifold with fibred corners. This allows us to define pseudodifferential operators as conormal distributions on a suitably blown-up double space. Various symbol maps are introduced, leading to the notion of full ellipticity. This is used to construct refined parametrices and to provide criteria for the mapping properties of operators such as Fredholmness or compactness. We also introduce a semiclassical version of the calculus and use it to establish a Poincaré duality between the -homology of the stratified pseudomanifold and the -group of fully elliptic operators.
@article{AIF_2015__65_4_1799_0, author = {Debord, Claire and Lescure, Jean-Marie and Rochon, Fr\'ed\'eric}, title = {Pseudodifferential operators on manifolds with fibred corners}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1799-1880}, doi = {10.5802/aif.2974}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_4_1799_0} }
Debord, Claire; Lescure, Jean-Marie; Rochon, Frédéric. Pseudodifferential operators on manifolds with fibred corners. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1799-1880. doi : 10.5802/aif.2974. http://gdmltest.u-ga.fr/item/AIF_2015__65_4_1799_0/
[1] The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér. (4), Tome 45 (2012) no. 2, pp. 241-310 | Numdam | MR 2977620 | Zbl 1260.58012
[2] Pseudodifferential operators on manifolds with Lie structure at infinity, Annals of Mathematics, Tome 165 (2007), pp. 717-747 | Article | MR 2335795 | Zbl 1133.58020
[3] Amenable groupoids, L’Enseignement Mathématique (2000) (Volume 36 of Monographies de L’Enseignement Mathématique) | MR 1799683 | Zbl 0960.43003
[4] The holonomy groupoid of a singular foliation, J. Reine Angew. Math., Tome 626 (2009), pp. 1-37 | Article | MR 2492988 | Zbl 1161.53020
[5] The analytic index of elliptic pseudodifferential operators on a singular foliation, J. K-Theory, Tome 8 (2011) no. 3, pp. 363-385 | Article | MR 2863417 | Zbl 1237.57030
[6] Interface and mixed boundary value problems on -dimensional polyhedral domains, Doc. Math., Tome 15 (2010), pp. 687-745 | MR 2735986 | Zbl 1207.35117
[7] -theory for operator algebras, Cambridge University Press (1998) | MR 1656031 | Zbl 0913.46054
[8] Théorème de de Rham pour les variétés stratifiées, Ann. Global Anal. Geom., Tome 9 (1991) no. 3, pp. 211-243 | Article | MR 1143404 | Zbl 0733.57010
[9] Spectral geometry of singular Riemannian spaces, J. Differential Geom., Tome 18 (1983) no. 4, pp. 575-657 | MR 730920 | Zbl 0529.58034
[10] Noncommutative Geometry, Academic Press, San Diego, CA (1994) | MR 1303779 | Zbl 0818.46076
[11] Holonomy groupoids of singular foliations, J. Differential Geom., Tome 58 (2001) no. 3, pp. 467-500 | MR 1906783 | Zbl 1034.58017
[12] -duality for stratified pseudomanifolds, Geom. Topol., Tome 13 (2009) no. 1, pp. 49-86 | Article | MR 2469513 | Zbl 1159.19303
[13] Index theory and groupoids, Geometric and topological methods for quantum field theory, Cambridge Univ. Press (2010), pp. 86-158 | MR 2648649 | Zbl 1213.81209
[14] Les -algèbres et leurs représentations, Gauthier-Villars, Paris (1964), pp. xi+382 | MR 171173 | Zbl 0174.18601
[15] Resolvent of the Laplacian on strictly pseudoconvex domains., Acta Math., Tome 167 (1991), pp. 1-106 | Article | MR 1111745 | Zbl 0758.32010
[16] Dynamics on Grassmannians and resolvents of cone operators, Anal. PDE, Tome 4 (2011) no. 1, pp. 115-148 | Article | MR 2783308 | Zbl 1228.58015
[17] Pseudodifferential calculus for generalized -rank 1 locally symmetric spaces I, J. Funct. Anal., Tome 257 (2009) no. 12, pp. 3748-3801 | Article | MR 2557724 | Zbl 1193.58013
[18] A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold, Mat. Sb. (N.S.), Tome 84 (126) (1971), pp. 163-195 | MR 283630
[19] The Analysis of Linear Partial Differential Operators. Vol. 3, Springer-Verlag, Berlin (1985) | Zbl 0601.35001
[20] Kähler-Einstein metrics with edge singularities (http://arxiv.org/abs/1105.5216)
[21] K-Theory, Springer-Verlag (2008 (reprint of the 1978 edition)) | MR 488029 | Zbl 0382.55002
[22] Equivariant KK-theory and the Novikov conjecture, Invent. Math., Tome 91 (1988), pp. 147-201 | Article | MR 918241 | Zbl 0647.46053
[23] Elliptic boundary problems on manifolds with polycylindrical ends, J. Funct. Anal., Tome 244 (2007), pp. 351-386 | Article | MR 2297028 | Zbl 1116.58021
[24] Pseudodifferential Analysis on Continuous Family Groupoids, Documenta Math., Tome 5 (2000), pp. 625-655 | MR 1800315 | Zbl 0961.22005
[25] Spectral invariance for certain algebras of pseudodifferential operators, J. Inst. Math. Jussieu, Tome 4 (2005) no. 3, pp. 405-442 | Article | MR 2197064 | Zbl 1088.35087
[26] General theory of Lie groupoids and Lie algebroids, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 213 (2005), pp. xxxviii+501 | MR 2157566 | Zbl 1078.58011
[27] Elliptic boundary value problems on manifolds with singularities, Probl. Mat. Anal., Tome 6 (1977), pp. 85-142 | Zbl 0453.58022
[28] Elliptic theory of differential edge operators. I., Comm. Partial Differential Equations, Tome 16 (1991) no. 10, pp. 1615-1664 | Article | MR 1133743 | Zbl 0745.58045
[29] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Tome 75 (1987) no. 2, pp. 260-310 | Article | MR 916753 | Zbl 0636.58034
[30] Analytic surgery and the eta invariant, Geom. Funct. Anal., Tome 5 (1995) no. 1, pp. 14-75 | Article | MR 1312019 | Zbl 0838.57022
[31] Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math., Tome 2 (1999) no. 4, pp. 833-866 | MR 1734130 | Zbl 1125.58304
[32] Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra, J. Differential Geom., Tome 87 (2011) no. 3, pp. 525-576 | MR 2819548 | Zbl 1234.53014
[33] Differential analysis on manifolds with corners (http://www-math.mit.edu/~rbm/book.html)
[34] Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Notes, Tome 3 (1992), pp. 51-61 | Article | MR 1154213 | Zbl 0754.58035
[35] The Atiyah-Patodi-Singer index theorem, A. K. Peters, Wellesley, Massachusetts (1993) | MR 1348401 | Zbl 0796.58050
[36] The eta invariant and families of pseudodifferential operators, Math. Res. Lett., Tome 2 (1995) no. 5, pp. 541-561 | Article | MR 1359962 | Zbl 0934.58025
[37] Geometric Scattering theory, Cambridge University Press, Cambridge (1995) | MR 1350074 | Zbl 0849.58071
[38] Analytic K-theory for manifolds with corners, Adv. in Math, Tome 92 (1992), pp. 1-27 | Article | MR 1153932 | Zbl 0761.55002
[39] Index in K-theory for Families of Fibred Cusp Operators, K-theory, Tome 37 (2006), pp. 25-104 | Article | MR 2274670 | Zbl 1126.58010
[40] Indice analytique et groupoïdes de Lie, C. R. Acad. Sci. Paris Sér. I Math., Tome 325 (1997), pp. 193-198 | Article | MR 1467076 | Zbl 0955.22004
[41] Equivalence and isomorphism for groupoid -algebras, J. Operator Theory, Tome 17 (1987), pp. 3-22 | MR 873460 | Zbl 0645.46040
[42] Homotopy classification of elliptic operators on stratified manifolds, Izv. Math., Tome 71 (2007) no. 6, pp. 1167-1192 | Article | MR 2378697 | Zbl 1154.58013
[43] Pseudodifferential operators on stratified manifolds, Differ. Uravn., Tome 43 (2007) no. 4, pp. 519-532 | MR 2358695 | Zbl 1133.58023
[44] Pseudodifferential operators on stratified manifolds II, Differ. Uravn., Tome 43 (2007) no. 5, pp. 685-696 | MR 2382851 | Zbl 1140.58008
[45] Elliptic theory on manifolds with corners. I. Dual manifolds and pseudodifferential operators, -algebras and elliptic theory II, Birkhäuser, Basel (Trends Math.) (2008), pp. 183-206 | Article | MR 2408142 | Zbl 1205.58017
[46] Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter & Co., Berlin, de Gruyter Expositions in Mathematics, Tome 13 (1994), pp. viii+525 | Article | MR 1283387 | Zbl 0806.35001
[47] Pseudodifferential operators on groupoids, Pacific J. Math., Tome 189 (1999), pp. 117-152 | Article | MR 1687747 | Zbl 0940.58014
[48] Operatori pseudodifferenziali in e applicazioni, Annali Mat. Pura et Appl., Tome 93 (1972), pp. 359-389 | Article | MR 437917 | Zbl 0291.35070
[49] Continuous family groupoids, Homology, Homotopy and Applications, Tome 2 (2000), pp. 89-104 | Article | MR 1782594 | Zbl 0992.22001
[50] A groupoid approach to -algebras, Springer, Berlin, Lecture Notes in Mathematics, Tome 793 (1980), pp. ii+160 | MR 584266 | Zbl 0433.46049
[51] Pseudodifferential operators on manifolds with foliated boundaries, J. Funct. Anal., Tome 262 (2012) no. 3, pp. 1309-1362 | Article | MR 2863864 | Zbl 1238.58018
[52] Asymptotics of complete Kähler metrics of finite volume on quasiprojective manifolds, Adv. Math., Tome 231 (2012) no. 5, pp. 2892-2952 | Article | MR 2970469 | Zbl 1264.53066
[53] Elliptic operators on manifolds with singularities and K-homology, K-theory, Tome 34 (2005), pp. 71-98 | Article | MR 2162901 | Zbl 1087.58013
[54] Pseudo-differential operators on manifolds with singularities, North-Holland, Amsterdam (1991) | MR 1142574 | Zbl 0747.58003
[55] Iterative Structures on Singular Manifolds, Geometric and Spectral Analysis, American mathematical society (CRM proceedings) (2014), pp. 173-222 | MR 3328543
[56] Pseudodifferential operators on , Sov. Math. Dokl., Tome 12 (1971), pp. 147-151 | Zbl 0249.47043
[57] Pseudodifferential operators and Spectral Theory, Springer (2001) | MR 1852334 | Zbl 0980.35180
[58] Kasparov’s bivariant -theory and applications, Exposition. Math., Tome 9 (1991), pp. 193-250 | MR 1121156 | Zbl 0746.19008
[59] Topological Vector Spaces, Distributions and Kernels, Academic Press, New York (1967) | MR 225131 | Zbl 0171.10402
[60] Unbounded pseudodifferential calculus on Lie groupoids, J. Funct. Anal., Tome 236 (2006) no. 1, pp. 161-200 | Article | MR 2227132 | Zbl 1105.58014
[61] Asymptotic behavior of generalized eigenfunctions in -body scattering, J. Funct. Anal., Tome 148 (1997) no. 1, pp. 170-184 | Article | MR 1461498 | Zbl 0884.35110
[62] Stratified mappings—structure and triangulability, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1102 (1984), pp. ix+160 | MR 771120 | Zbl 0543.57002